REWEW | | | PROJ | ECTILE MOTI | | | |---|--|---|--|---|--| | Proiectile | Motion Formulas | | | NAME | Period | | • | θ ; $v_y = v \sin \theta$; $t_y = t$ | $v_x = v_y/g$; $t_{total} =$ | 2 t _y ; range = | $v_x t_x = 2 v^2 \sin \theta \cos \theta$ | $g \theta / g = v^2 \sin 2\theta / g$ | | | s 1-4 refer to the ballistic
r soon after the cart was | | | | ng in the cart is shot upward | | A. incre A. incre 3 A. incre 4 A. incre | The sphere will miss eases B. decreases The sphere will fall i eases B. decreases The sphere will fall i | the cart to the C. remains conson back of the carc C. remains conson back into the | side if the cart stant in magnitude art if the cart stant in magnitude cart only if the stant in magnitude cart only if the stant in magnitude | e D. remains constant cart velocity e D. remains constant cart velocity e D. remains constant | in magnitude and direction in magnitude and direction in magnitude and direction | | 5.
A. 30°
6.
A. 30' | The maximum horiz | | | | | | | If θ = 15°, the cannot B. 45° | n ball can also
C. 55° | be given the s
75° | ame range if θ equ
E. 90° | als: | - ____ The maximum height occurs when: - A. angle θ equals 45° B. V_x is a maximum C. the cannon ball is halfway through its flight D. $V_y = 0$. - If the initial velocity ν is maintained constant, as the angle θ decreases: A. the horizontal and vertical components of velocity become smaller. - B. The horizontal and vertical components of velocity become larger. - C. The horizontal velocity component increases and the vertical component decreases. - D. The vertical velocity component increases and the horizontal component decreases. | 10 During the cannon ball's flight, the horizontal acceleration is: A. always zero B. zero just at the top of the trajectory C. 9.8 m/s² up D. 9.8 m/s² down | |---| | 11 During the cannon ball's flight, the vertical acceleration is: A. always zero B. zero just at the top of the trajectory C. 9.8 m/s² up D. 9.8 m/s² down. | | 12 During the cannon ball's flight, the horizontal velocity (neglecting air friction) is: A. a constant non-zero number B. slowing as it rises C. slowing as it falls D. zero E. 9.8 m/s² down | | 13 During the cannon ball's flight, the vertical velocity (neglecting air friction) is: A. a constant non-zero number B. slowing as it rises C. slowing as it falls D. zero E. 9.8 m/s² down | | Questions 14-20 refer to a ball thrown horizontally off a 21 meter high cliff with velocity $v_x = 13$ m/s. Assume the ground is perfectly horizontal and neglect air resistance. | | Complete | | 14 About what time horizontally is the ball in the air after being thrown: A. 4.3 m B. 1.5 s C. 2.1 m D. 2.1 s E. 2.1 m/s | | 15 About what time vertically is the ball in the air after being thrown: A. 4.3 m B. 1.5 s C. 2.1 m D. 2.1 s E. 2.1 m/s | | 16 What is the range of ball: A. 54.6 m B. 54.6 s C. 27.3 m D. 27.3 m/s ² E9.8 m/s ² | | 17 What is the acceleration of the ball horizontally? A9.8 m/s ² B. 0 m/s ² C. 27.3 m/s ² D9.8 m/s E. gravity | | 18 If another ball 13 times more massive is thrown horizontally 13 times faster, the range of this | | second ball will be: A. 13 times as far B. 169 times as far C. the same D. the square root of 13 times as much | | 19 If another ball 13 times more massive is thrown horizontally 13 times faster, the time it takes to | | fall vertically to the ground for this second ball will be: A. 13 times as far B. 169 times as far C. the same D. the square root of 13 times as much | | Which of the following statements is correct? A. Vertical and horizontal components of the ball are independent B. The time to fall (vertically) if just dropped is equal to the time for the range (horizontally) C. Acceleration on the ball is constant throughout its flight even if thrown at an angle D. All of the above | Twenty more points of problem solving on the test. Any five of eight questions/problems.