Name:	
-------	--

PHYSICS GREAT AMERICA TRIP RAW DATA SHEET (Rev 5/2013)

- <u>Each student</u> will record raw data measurements taken at the park on this page. When preparing the formal lab report, include this page for <u>each student</u>. USE BALL POINT PEN and remember to THINK METRIC!
- RESEARCH (5 points): Use www.sixflags.com. Choose from 10 thrill rides (see other side).

Name of ride:	
Max Velocity (m/s):	
Track length (m):	
Max height (m):	
Total time of ride (s):	

• **DATA MEASUREMENTS:** At the park, <u>each person</u> in your group will collect the following data for each of the 2 rides. Be sure to include each person's raw data sheet with your lab report.

RIDE 1:	RIDE 2:

- a. Total # of passengers on fully-loaded train:
- b. Total # of cars on each train:
- c. Time the total ride:
- d. <u>All group members</u> independently determine height of the first hill (show sample calculation).

Ride 1

Ride 2

Calculations

Eye height (e) (m) Angle 1 (θ_1)

Angle 2 (θ_2)

Distance (b) (m)

• RIDE ANALYSIS (11 points each ride): For each ride, place smooth data table and questions on a separate, clean sheet of paper. Think metric (MKS)!

<u>Data collation</u>: Raw data for all group members is to be placed in a smooth table for each ride. <u>Average the values for ride time and height</u> and use to answer the following questions.

Questions: As a group, answer the following questions for each ride. Show all calculations.

- 1. Compare total ride time to the advertised values (error). Comment on discrepancies.
- 2. Compare height of tallest hill to advertised value (error). Comment on discrepancies.
- 3. Which hill on each ride is the highest and why?
- 4. Calculate the work needed to bring a fully-loaded train to the top of the first hill.
- 5. Calculate max velocity on the ride. Where does this occur? Compare to advertised value (error).
- 6. Calculate the ride's average velocity. How does it compare to the maximum velocity? Why the difference?
- 7. Discuss features of the selected ride which make it unique compared to other park rides.

GREAT AMERICA PHYSICS SCAVENGER HUNT!!!

Determine the following numbers (round to nearest whole #) and add them to find the final answer. Worth 10 points.

1.	# of times upside-down on Batman
2.	# of flag poles around the reflection pool
	# of riders per car on Demon (when full)
4.	# of mammalian horses on lower level of Columbia Carousel
5.	# of riders on American Eagle (when full)
6.	max height in centimeters (not inches) to ride Vertical Velocity
	# of restaurants in the County Fair Food Court
	last 2 digits of year on Cochrane Building in Hometown Square
	# of revolutions per minute of Condor center hub
	# of cups on Chubasco
	# of cars per train on Viper
	Closing time of park on day of our visit (to nearest hour)
	TOTAL:

MASSES OF VARIOUS RIDES

• Mass of one person = 65 kg

• Mass of <u>individual</u> cars: (without passengers)

American Eagle: 1050 kg

Batman: 485 kg

Demon: 725 kg

Raging Bull: 1225 kg Ragin' Cajun: 500 kg (?) Superman: 500 kg (?)

Dark Knight: 500 kg (?)

Viper: 1050 kg V2: 500 kg (?)

X Flight: 500 kg (?)

LAB REPORT REQUIREMENT

- One report per group, worth 45 points, due Friday May 10.
- Groups to consist of 3-4 students.
- All measurements/calculations to be in metric units.
- Full group lab report, typed on unlined paper (calculations may be handwritten):
 - → Cover page with student/hour and teacher names (2 points)
 - → Purpose and procedure (2 points)
 - → Research of rides (5 points)
 - → Raw data sheet for <u>each student</u> (5 point penalty if not included)
 - → Scavenger hunt tabulated (10 points)
 - → <u>Clean page for each ride</u> (11 points each) with data table summarizing all students' data, and answers to questions showing calculations where necessary
 - → Group conclusion and summary (4 points)