Measurement Lab

Purpose: To learn how to measure with a vernier caliper, measure mass, use excel, excel graph.

Procedure: Obtained some pennies and different size metal spheres
Measure odd numbers of pennies stacked, at least five different amounts and recorded.
Measured the diameter of five different size metal spheres
Set up the data table as below with correct formulas in excel
Graphs in excel
calculations in excel
conclusion
summary
Slide from your H: drive to our correct R: drive location. One lab per group.
DATA TABLE \#1: PENNIES
(cm)
diameter $\quad 1.87$ radius
0.935 pennies

\# of pennies	measured thickness (cm)	measured mass (g)	$\begin{gathered} \text { calculated } \\ \mathrm{A}=\mathrm{pi}^{*} \mathrm{r}^{\wedge} 2 \\ \text { Base Area } \\ \text { (sq. cm) } \end{gathered}$	calculated $\mathrm{V}=\mathrm{B} * \mathrm{~h}$ volume (cc)
0	0.00	0.00	2.7464588	0
3	0.41	7.7	2.7464588	1.126048
5	0.68	12.7	2.7464588	1.85386
7	0.95	17.6	2.7464588	2.609136
9	1.28	22.6	2.7464588	3.515467
11	1.57	27.6	2.7464588	4.31194

Mr. K. and Mr. R.'s Pennies Density

Calculations:

$\mathrm{A}=\mathrm{pi} * \mathrm{r} \wedge 2=$	$3.14159 * 0.935 \wedge 2=$	2.7464588 sq. cm
$\mathrm{V}=\mathrm{B} * \mathrm{~h}=$	$=2.937389 * 0.41=$	1.1260481 cubic cm

Note from the equation of the graph: Our graph claims the density of pennies is 6.09

$$
\begin{array}{lll}
\% \text { error: } & =(6.09-5.7) / 5.7 * 100= & 6.8421053 \\
& \text { less than } 10 \% \text { so acceptable error }
\end{array}
$$

DATA TABLE \#2: BALL BEARINGS
$\mathrm{V}=4 * \mathrm{pi}(){ }^{*} \mathrm{r}^{\wedge} \mathrm{3} / 3$
diameter radius
thickness thickness mass volume
(cm) (cm)
$0.00 \quad 0.00$
$1.27 \quad 0.635$
(g) (cc)
1.750 .875
$8.3 \quad 1.072531$
2.151 .075
$21.7 \quad 2.806162$
$2.54 \quad 1.27$
$40.5 \quad 5.203721$
$3.02 \quad 1.51$
67.28 .580247
111.514 .4218

Mr. K. \& Mr. R.'s
Ball Bearings

$\begin{array}{ll}\text { \% error: } & =(7.9-7.7591) / 7.9 * 100=1.7835443 \\ & \text { only } 2 \% \text { error! Cool, way to go Mr. R.! }\end{array}$
Calculations:
$\mathrm{V}=4 * \mathrm{pi}() * \mathrm{r}^{\wedge} 3 / 3=\quad=4 * \mathrm{pi}() * 0.635 \wedge 3 / 3=1.0725308$

Density from Graph Equation is: 7.7591
\% error: $=(7.9-7.7591) / 7.9 * 100=1.783544$
only 2% error! Cool, way to go Mr. R.!

Questions:

1. Why might the way we measured the thickness of our penny by faulty? (and thus the volume of our penny)
2. Would the answer to \#1 cause our volume to be to high or to low?
3. Would the answer to \#1 cause your error to be higher or lower?

Group Conclusion:

Group Summary:

