MAD LAB (quickie lab) (10 pts)

Purpose: Check out all six cases for a converging lens. (get out your lens diagram paper before starting)

Procedure:									
1). While in a hal	llway	with a	lens, ri	nler (c	m), and	white	sheet o	f na	per (screen):
have light from th									
the screen and mo									
the upside down i									
-	_					reem. r	vicasui	C till	s distance as i
(the focal length o						:c: C-	1	uu laa	d 5 am (fan
2). Inside for all t									
instance) for the f		_							
metric stick (mak				_					
and s _o) place the l									
image is focused (
distances until the									
f =	cm (v	e will	use thi	s as th	ie actua	l focal l	length	for %	% error later)
3). {Cases 2 & 4}									
Now place the obj									
measure s _i and pl									
showing calculation									
showing calculation									
4). {Case 6} Note	: Wh	at do y	ou hav	e to d	o to see	the vir	tual im	age :	for case 6?
5). {Case 5} Note	: For	case 5	your i	mage	distance	in the	lab wa	ıs	cm
			*	4 DO 4 7	D 4 D F E				
	~	LOTE A	D	AIA	TABLE				
_	CASE 2 CASE 4								
	S_o	S_i	f	%	S_0	S_i	f	%	

(cm) (cm) (cm)

(cm)

(cm)

(cm)

Conclusion: