Name:	•	Hour:

Loop-the-Loop

Purpose: To calculate the <u>minimum</u> drop height required for a hot wheels car to make it around a loop.

Procedure:

Data Table:

Part 1 Determining Efficiency of Track					
Initial height (m)	Final Height (m)			Efficiency (%)	
	Trial 1	Trial 2	Avg		

Part 2 Calculating Drop Height				
Loop height (m)	Drop height (100% efficient) (m)	Drop height (actual efficiency) (m)		

Calculations:

Show all work, including formulas, algebra, plugged-in numbers, units, and circled answers.

- Efficiency
- Velocity at top of loop
- Drop height (100% efficient)
- Drop height (actual efficiency)
- % error if needed

Questions:

- 1. What is the magnitude and direction of the acceleration of the car at the top of the loop when the car just barely makes it around the loop?
- 2. If the car were given a little push down the ramp, would the minimum drop height be higher or lower? Why?
- 3. Where along the track (with the loop) does the car have the greatest speed? Why?

Results:

Did your car just barely make it around the loop on your first attempt? If not, what was your % error?

Discussion:

- Why does the car need to be dropped from a higher position than the conservation of energy suggests? Where does the lost energy go? Be specific.
- List and briefly describe 2 measurement errors that might have affected your results. Be specific.