Name https://www.solidpapers.com/collegepapers/Mathematics/10655.htm Which circle below has more points on it (smaller or larger)? Are there more points on the entire number line or between 0 and 1 on the real number line? ## Real Numbers N = 1, 2, 3, 4, 5, W = 0, 1, 2, 3, 4, 5, I =-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, Q = Rational #5 (Meaning Fractions) terminating decimals 1/2 = 0.5 repeating decimals 1/3 = .33333 ## Georg Ferdinand Ludwig Philipp Cantor March 3 1845^[1] – January 6, 1918 What if we add one number, is ∞ larger? 1, 2, 3, 4, 5, 6, ... 0, 1, 2, 3, 4, 5, 6, ... What if we add an ∞ amount of #'s, now do we have a larger ∞? Why were the rational #'s called rational and the irrational #'s called irrational? How can you find a fraction between any two other fractions on the real number line? Surely all rational #'s must be a larger ∞? In mathematics, a transcendental number is a number (possibly a complex number) which is not algebraic—that is, it is not a root of a non-constant polynomial equation with rational coefficients. The most prominent examples of transcendental numbers are π and e. Though only a few classes of transcendental numbers are known (in part, because it can be extremely difficult to show that a given number is transcendental) transcendental numbers are not rare: indeed, almost all real and complex numbers are transcendental, since the algebraic numbers are countable while the sets of real and complex numbers are uncountable. All real transcendental numbers are irrational, since all rational numbers are algebraic. The converse is not true: not all irrational numbers are transcendental, eg the square root of 2 is irrational but is an algebraic number (therefore, not transcendental). | | | | | | | | | | | | | to any nonzero algebr | aic | |---|---|---------------------------------------|---|--|---|--|---|--|--|--|--|---|-------| | power is | transcend | lental, and | d since ϵ^i | $^{\pi}+1$ | =0 is | algebraic | (see Eule | r's identity | /), <i>iπ</i> and t | herefore π | must be transo | cendental. | | | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | | | | 1 | 1/1 | 2/1 | 3/1 | 4/1 | 5/1 | | | | | NAM | E | | | | | | | | | | | | | | ,,,,,, | | | | | 2 | 1/2 | 2/2 | 3/2 | 4/2 | 5/2 | 6/2 | 7/2 | | C | $\sim m M$ | en T | | | | _ | /- | | - | | | | .÷. | | C | , , , , , | | | | | _ | 4.10 | 0.40 | 0.40 | 4.10 | <i>-</i> 10 | 0/0 | 7/0 | 0/0 | | | | | | | 3 | 1/3 | 2/3 | 3/3 | 4/3 | 5/3 | 6/3 | 7/3 | 8/3 | 4 | 1/4 | 2/4 | 3/4 | 4/4 | 5/4 | 6/4 | 7/4 | 8/4 | 9/4 | | | | | | • • • | Now | lay the | m out ir | a patte | ern: Upp | er left, | down or | ne, up d | liagonal | , right o | ne, down dia | agonal, down on | e, up | | diagon | al, right | one. d | own dia | gonal, . | | | | | | | | | | | _ | | | | _ | | . 4/2. 3/ | 3. 2/4. ³ | 4. 4/3. | One | could re | emove the re | epeats. | | | | | • | | | 10, 11 | | | .,, | | | | • | | | | | | | | | | | + ara | 2000 | iblo s | adutions | a ta algabro | vio. | | Alge | braic | ırrat | lonai | S: Ke | eai nu | | เร แเฮ | ıı are | poss | sible s | SOIULIONS | s to algebra | liC | | equa | ations | like | $\chi^2 = \frac{1}{3}$ | 2 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | | | | | 1 | 2 | 3 | 4 | 5 | O | ′ | | | | | | | | 2 | $\sqrt{1}$ | $\sqrt{2}$ | $\sqrt{3}$ | $\sqrt{4}$ | $\sqrt{5}$ | | | , | NAA | 1E | | | | | 3 | 3/5 | 3/5 | 3/2 | 3/4 | 3√ 5 | | | (| DOMM | ENT | | | | | | $\sqrt[3]{1}$ | √ 2 | 3 √3 | ∜4 | 4 5 | | | | - | | | | | | 4 | ∜ 1 | 4/2 | 4√3 | 4/4 | 4/5 | | | | | | | | | | | VΙ | 72 | V 3 | V T | V 3 | | | | | | | | | | 5 | 5√1 | \$√2 | 5√3 | 5√4 | √5 | | Magr | nitude | es (br | ightne | ess) of s | stars. √100 | | | R | • | - | - | | | | _ | | • | _ | - | th rational # | 's. | | | | | | | | | | | | | | After writin | | | | | | | | | | | | | | | you missed | | | | | | | | s dia | italiza | ition.) | - | | | | | | | (Can | tor ca | XIIICU | unsp | | | | | | | | | | | | (Can
.287451 | 02736 | 1 | Making | g a real n | umber yo | u missed | i, go dow | n the dia | | | | nake it a 3 and if no
er is not in our list? | as | | (Can
,287451
,476482 | 02736
16452 | | Making
ma | g a real n
ake the n | umber yo
umber a | u missed
1. In our | i, go dow
case .11 | n the dia
131 F | łow do w | e know th | at this numbe | er is not in our list? | | | (Can
.287451
.476482
.333333 | 02736
16452
333333 | | Making
ma
Can w | g a real nake the nake genera | umber yo
umber a | u missed
1. In our | i, go dow
case .11 | n the dia
131 F | łow do w | e know th | at this numbe | | | | (Can
.287451
.476482
.333333
.656565 | 02736
216452
333333
3656565. | • • • • • • • • • • • • • • • • • • • | Making
ma
Can w
origi | g a real nake the nak | umber yo
iumber a
ate a large
Aleph n | ou missed | i, go dow
case .11
Power
same as w | n the dia 131 H Set { the hat we us | low do w
set of al
ually call i | e know th
I possible
nfinity, nan | nat this numbe
subsets of ar | er is not in our list? ny set is larger than of the integers. | the | | (Can
.287451
.476482
.333333
.656565 | 02736
216452
333333
3656565. | • • • • • • • • • • • • • • • • • • • | Making
ma
Can w
origi | g a real nake the nak | umber yo
iumber a
ate a large
Aleph n | ou missed | i, go dow
case .11
Power
same as w | n the dia 131 H Set { the hat we us | low do w
set of al
ually call i | e know th
I possible
nfinity, nan | nat this numbe
subsets of ar | er is not in our list?
ny set is larger than | the | | (Can
.287451
.476482
.333333
.656565
.250000 | 02736
216452
333333
6656565.
0000000. |
The ne | Making
ma
Can w
origi
ext known o | g a real nake the nake the nake general inal set.} | umber yo
number a
aite a large
Aleph n
nigger infin | ou missed
1. In our
er infinity
ull is the s
ity is deno | case .11 Power same as w | n the dia 131 H Set { the hat we us and it is th | low do w
set of al
ually call i
e "infinity | e know the possible of the control o | nat this number
subsets of ar
nely the infinity
tinuum" or the in | er is not in our list? ny set is larger than of the integers. | the |