Name	

UWSP Math 111 Section 4 Exam 2 (over sections 3.6-4.4) (partial credit possible so show all your work)

1.	(4 pts.)	Find	dy/dx	by im	plicit	differentiation	$2 x^2$	$+y^2$	= 1	.6

Answer: $\frac{dy}{dx} =$

2. (8 pts.) Find d^2y/dx^2 if $xy - y^3 = 4$

Answer: $\frac{d^2y}{dx^2} =$

3. (8 pts.) Find an equation of the tangent line to the graph of the function f defined by the equation at the indicated point. $X^2y^3 - y^2 + xy - 1 = 0$ (1,1)

Answer: <u>y = </u>

	wall. At the instant of time when the base is 12 ft from the wall, the base is moving at the rate of 9 ft/sec. How fast is the top of the ladder sliding down the wall at that instant of time? Hint: Make a diagram of the ladder leaning against the wall and note $x^2 + y^2 = 169$ (where x is the base from the bottom of the ladder to the wall and y is the height). Find dy/dx when x = 12 and dx/dt = 9.
Answer	: <u>dy/dx =</u>
Page 2	
	5. (6 pts.) Find the interval(s) where the function is increasing and the interval(s) where it is decreasing.
	$f(x) = x^3 - 3 x^2$
	Increasing interval(s)
	Decreasing interval(s)

4. (10 pts.) A Sliding Ladder: The base of a 13 ft ladder leaning against a wall begins to slide away from the

6.	(6 pts.) Find the relative maxima and relative minima, if any, of f(x)
	$f(x) = (1/3) x^3 - x^2 - 3x + 4$
	Relative maxima(,)
	Relative minima(,)
7.	(6 pts.) Determine where the graph of the function is concave upward and where it is concave downward
	$f(x) = 3 x^2 - 6 x - 24$
	Concave upward
	Concave downward
0	
8.	(6 pts.) Find the inflection point(s), if any, of $f(x) = 2x^3 - 3x^2 + 18x - 8$

Answer:	(,) is a relative	
	.0. (6 pts.) _Sketch the graph of a function ha $f(2) = 4$, $f'(2) = 0$, $f''(x) < 0$ on $(-\infty)$	
1	.1. & 12. (6 pts. each) Find the horizontal an	d vertical asymptotes of the graph of the function. (You need NOT
	sketch the graph) 11. $f(x) = 1/(x+2)$	12. $f(x) = 2 x^3 + x^2 + 1$
horizonta	al asymptote(s)	horizontal asymptote(s)
vertical a	symptote(s)	vertical asymptote(s)

9. (6 pts.) Find the relative extrema, if any, of $f(x) = 2x^2 - 8x + 7$ Use the Second Derivative Test if applicable

for determining if it is a relative maximum or relative minimum.

				•
13.	(10 pts.)) Sketch the graph of the function $f(x) = (x^2 - 9)$	/ ($x^2 - 4$

14. (4 pts.) Find the absolute maximum value and the absolute minimum value, if any, of each function.

$$f(x) = x^2 - 2x - 3$$
 on [0, 4]

absolute maximum value _____

absolute minimum value _____

15. (4 pts.) f(x) = 9x + (1/x) on [1,3]

Absolute maximum value _____

Absolute minimum value _____

Extra credit

	1.	(3 pts.) A stone is thrown straight up from the roof of an 80 ft. building. The height (in feet) of the stone at any time t (in seconds), measured from the ground, is given by
$h(t) = -16 t^2 +$	64 t +	· 80
What is the m	naxim	um height the stone reaches?
	2.	(3 pts.) Maximizing Profits Acrosonic's total profit (in dollars) from manufacturing and selling x unit of their model F loudspeaker systems is given by
		P (x) = $-0.02 \text{ x}^2 + 300 \text{ x} - 200,000 \text{ (} 0 \le \text{x} \le 20,000 \text{)}$
How many ur	nits of	the loudspeaker system must Acrosonic produce to maximize its profits?
	3.	(4 pts.) The volume V of a cube with sides of length x in. is changing with respect to time. At a certain instant of time, the sides of the cube are 5 in. long and and increasing at the rate of 0.2
		in./sec. How fast is the volume of the cube changing at that instant of time?

Answer: dV/dt = _____