

$$\frac{1}{f} = \frac{1}{5_{0}} + \frac{1}{5_{1}}$$

$$\frac{1}{f} = \frac{1}{d_{0}} + \frac{1}{d_{1}}$$

Figure 12 Light rays that are parallel converge at a single point (a), which can be represented in a diagram (b), when the rays are assumed to be from a distant object $(p \approx \infty)$.

EQUATION FOR MAGNIFICATION

$$M = \frac{h'}{h} = -\frac{q}{p}$$

Magnification = $\frac{\text{image height}}{\text{object height}} = \frac{\text{image distance}}{\text{object distance}}$

Type of image Sign of M Orientation of image this applies to with respect to object

Sign Conventions for Magnification

virtual upright real

Rules for Drawing Reference Rays Table 3

Table 2

inverted

Ray	Line drawn from object to mirror	Line drawn from mirror to image after reflection	
1	parallel to principal axis	through focal point F	
2	through focal point F	parallel to principal axis	
3	through center of curvature C	back along itself through C	

