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PROBLEM SOLUTIONS 

8.1 Since the friction force is tangential to a point on the rim of the wheel, it is perpendicular to the radius line 

connecting this point with the center of the wheel. The torque of this force about the axis through the center of the 

wheel is then  = rf sin 90.0º = rf, and the friction force is 

  
76.0 N m

217 N
0.350 m

f
r

 
    

8.2 The torque of the applied force is  = rF sin. Thus, if r = 0.330 m,  = 75.0º, and the torque has the maximum 

allowed value of max = 65.0 N  m, the applied force is 

   
 

max 65.0 N m
204 N

sin 0.330 m sin 75.0
F

r






  


 

8.3 First resolve all of the forces shown in Figure P8.3 into components parallel to and perpendicular to the beam as 

shown in the sketch below. 

(a)        25 N cos 30 2.0 m 10 N sin 20 4.0 m 30 N mO              

  or  0 = 30 N  m counterclockwise 

 (b)        30 N sin 45 2.0 m 10 N sin 20 2.0 m 36 N mC                

  or c = 30 N  m counterclockwise 

8.4 The lever arm is  2 31.20 10  m cos 48.0 8.03 10  md      , and the torque is 
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    380.0 N 8.03 10  m 0.642 N m  counterclockwiseFd        

8.5 (a)       singF lever arm mg      

      23.0 kg 9.8 m s 2.0 m sin 5.0 5.1 N m        

 (b) The magnitude of the torque is proportional to the sin , where  is the angle between the direction of the 

force and the line from the pivot to the point where the force acts. Note from the sketch that this is the same as the 

an gle the pendulum string makes with the vertical. 

  Since sin  increases as  increases, the torque also increases with the angle. 

8.6 The object is in both translational and rotational equilibrium. Thus, we may write: 

  0   0  x x xF F R      

  0    0y y y gF F R F       

 and 

    0    cos sin cos 0
2

O y x gF F F   
 

       
 

8.7   

 Requiring that  = 0, using the shoulder joint at point O as a pivot, gives 

        sin 12.0 0.080 m 41.5 N 0.290 m 0tF      or 724 NtF   
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 Then  0 724 N sin 12.0 41.5 N = 0y syF F      , yielding 109 NsyF   

  0yF   gives  724 N cos12.0 = 0sxF   , or 708 NsxF   

 Therefore, 

    
2 22 2 708 N 109 N 716 Ns sx syF F F      

8.8 (a) Since the beam is in equilibrium, we choose the center  

as our pivot point and require that 

      Sam Joecenter
2.80 m 1.80 m 0F F      

  or 

  Joe Sam1.56F F  [1] 

  Also, 

  Sam Joe0      450 NyF F F      [2] 

  Substitute Equation [1] into [2] to get the following: 

  Sam Sam1.56 450 NF F   or Sam

450 N
176 N

2.56
F    

  Then, Equation [1] yields  Joe 1.56 176 N 274 NF   . 

 (b) If Sam moves closer to the center of the beam, his lever arm about the beam center decreases, so the force 

Sam  must increaseF  to continue applying a clockwise torque capable of offsetting Joe’s counterclockwise 

torque. At the same time, the force Joe  would decreaseF  since the sum of the two upward forces equal the 

magnitude of the downward gravitational force. 

 (c) If Sam moves to the right of the center of the beam, his torque about the midpoint would then be 

counterclockwise. Joe would have to hold down on the beam in order to exert an offsetting clockwise torque. 

8.9 Require that  = 0 about an axis through the elbow and perpendicular to the page. This gives 
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         22.00 kg 9.80 m s 25.0 cm + 8.00 cm cos 75.0 8.00 cm 0BF       
   

 or 

 
   
 
19.6 N 33.0 cm

312 N
8.00 cm cos 75.0

BF  


 

8.10 Since the bare meter stick balances at the  

49.7 cm mark when placed on the fulcrum, the 

center of gravity of the meter stick is located 49.7 cm 

from the zero end. Thus, the entire weight of the meter  

stick may be considered to be concentrated at this point. 

The free-body diagram of the stick when it is balanced 

with the 50.0-g mass attached at the 10.0 cm mark is as 

given at the right. 

 Requiring that the sum of the torques about point O be zero yields 

   50.0 g g  39.2 cm 10.0 cm M g      49.7 cm 39.2 cm 0   

 or 

   
39.2 cm 10.0 cm

50.0 g 139 g
49.7 cm 39.2 cm

M
 

   
 

8. 11 Consider the remaining plywood to consist of two  

parts: A1 is a 4.00-ft-by-4.00-ft section with center of gravity 

located at (2.00 ft, 2.00 ft), while A2 is a 2.00-ft-by-4.00-ft section with 

center of gravity at (6.00 ft, 1.00 ft). Since the plywood is uniform, its 

mass per area  is constant and the mass of a section having 

area A is m = A. The center of gravity of the remaining 

plywood has coordinates given by 

  cg
i i

i

m x
x

m


 



1 1A x  2 2A x

 1A 

       

   

2 2

2 2
2

16.0 ft 2.00 ft 8.00 ft 6.00 ft
3.33 ft

16.0 ft 8.00 ftA


 


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 and 

 cg
i i

i

m y
y

m


 



1 1A y  2 2A y

 1A 

       

   

2 2

2 2
2

16.0 ft 2.00 ft 8.00 ft 1.00 ft
1.67 ft

16.0 ft 8.00 ftA


 


 

8.12 (a)  

     290.0 kg 9.80 m s 882 NMg       255.0 kg 9.80 m s 539 Nmg    

 (b) The woman is at x = 0 when n1 is greatest. With this location of the woman, the counterclockwise torque 

 about the center of the beam is a maximum. Thus, n1 must be exerting its maximum clockwise torque about 

 the center to hold the beam in rotational equilibrium. 

 (c) n1 = 0 As the woman walks to the right along the beam, she will eventually reach a point where the beam will 

 start to rotate clockwise about the rightmost pivot. At this point, the beam is starting to lift up off of the left

 most pivot and the normal force exerted by that pivot will have diminished to zero. 

 (d) When the beam is about to tip, n1 = 0 and Fy = 0, gives 0+n2 – Mg – mg = 0, or 

  3
2 882 N 539 N 1.42 10  Nn Mg mg       

 (e) Requiring that rightmost
pivot

0   when the beam is about to tip (n1 = 0) gives 

     4.00 m 4.00 m 3.00 m 0x mg Mg      

  or      1.00 m 4.00 mmg x Mg mg  , and 

    1.00 m 4.00 m
M

x
m

   

  Thus, 
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   
 
 
90.0 kg

1.00 m 4.00 m 5.64 m
55.0 kg

x     

 (f)  When n1 = 0 and n2 = 1.42 × 103 N, requiring that left
end

0   gives 

           30 539 N 882 N 3.00 m 1.42 10  N 4.00 m 0x      

  or 

  
33.03 10  N m

5.62 N
539 N

x
  

 


 

  which, within limits of rounding errors, is the same as the answer to part (e). 

8.13 Requiring that cg 0i i ix m x m     gives 

  
             

 
5.0 kg 0 3.0 kg 0 4.0 kg 3.0 m 8.0 kg

0
5.0 3.0 4.0 8.0  kg

x  


  
 

 or 8.0 x + 12 m = 0 which yields x = – 1.5 m 

 Also, requiring that cg 0i i iy m y m     gives 

 
             

 
5.0 kg 0 3.0 kg 4.0 m 4.0 kg 0 8.0 kg

0
5.0 3.0 4.0 8.0  kg

y  


  
 

 or 8.0y + 12 m = 0 yielding y = – 1.5 m 

 Thus, the 8.0-kg object should be placed at coordinates (–1.5 m, –1.5m) . 

8 .14 (a) As the woman walks to the right along the beam, 

 she will eventually reach a point where the beam will start  

 to rotate clockwise about the rightmost pivot. At this point,  

 the beam is starting to lift up off of the leftmost pivot and the 

 normal force, n1, exerted by that pivot will have diminished to 
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 zero. 

  Then, 20      0 0yF mg Mg n       , or 

   2n m M g   

 (b) When n1 = 0 and n2 = (m + M)g, requiring that left
end

0   gives 

       0 0
2

L
mg x Mg mg Mg      or 1

2

M M
x L

m m

   
        

 

 (c) If the woman is to just reach the right end of the beam (x = L) when n1 = 0 and n2 = (m+M)g (i.e., the beam is 

 ready to tip), then the result from Part (b) requires that 

  1
2

M M
L L

m m

   
        

 or 
 
 
1 2 2

1

M m m M
L

M m m M

  
     

 

8.15 In each case, the distance from the bar to the center of mass of the body is given by 

 
arms arms torso torso thighs thighs legs legs

cg
arms torso thighs legs

i i

i

m x m x m x m xm x
x

m m m m m

  
 

   
 

 where the distance x for any body part is the distance from the bar to the center of gravity of that body part. In each 

case, we shall take the positive direction for distances to run from the bar toward the location of the head. 

 Note that  6.87 33.57 14.07 7.54  kg 62.05 kgim      . 

 With the body positioned as shown in Figure P8.15b, the distances x for each body part is computed using the 

sketch given below: 
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  arms cg
arms

0.239 mx r     

  torso arms cg
torso

0.548 m + 0.337 m 0.885 mx r      

    thighs arms torso cg
thighs

0.548 + 0.601+ 0.151  m 1.30 mx r       

    legs arms torso thighs cg
legs

0.548 + 0.601+ 0.374 + 0.227  m 1.75 mx r        

 With these distances and the given masses we find 

 cg

62.8 kg m
1.01 m

62.05 kg
x

 
    

 With the body positioned as shown in Figure P8.15c, we use the following sketch to determine the distance x for 

each body part: 

  arms cg
arms

0.239 mx r     

  torso arms cg
torso

0.548 m 0.337 m 0.211 mx r        

    thighs arms torso cg
thighs

0.548 0.601 0.151  m 0.204 mx r          

    legs arms torso thighs cg
legs

0.548 0.601 0.374 0.227  m 0.654 mx r            

 With these distances, the location (relative to the bar) of the center of gravity of the body is 

cg

0.924 kg m
0.015 m 0.015 m towards the head

62.05 kg
x

 
     

8.16 With the coordinate system shown below, the coordinates of the center of gravity of each body part may be 

computed: 
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 cg,arms 0x    cg,arms arms cg
arms

0.309 my r    

  cg,torso cg
torso

0.337 mx r   cg,torso 0y   

  cg,thighs torso cg
thighs

cos 60.0 0.676 mx r     cg,thighs cg
thighs

sin 60.0 0.131 my r   

  cg,legs torso thighs cg
legs

cos 60.0 1.02 mx r     cg,legs thighs sin 60.0 0.324 my    

 With these coordinates for individual body parts and the masses given in Problem 8.15, the coordinates of the 

center of mass for the entire body are found to be 

 
arms cg,arms torso cg,torso thighs cg,thighs legs cg,legs

cg
arms torso thighs legs

28.5 kg m
0.459 m

62.05 kg

m x m x m x m x
x

m m m m

   
  

  
 

 and 

 
arms cg,arms torso cg,torso thighs cg,thighs legs cg,legs

cg
arms torso thighs legs

6.41 kg m
0.103 m

62.05 kg

m y m y m y m y
y

m m m m

   
  

  
 

8.17 The free-body diagram for the spine is shown below. 

 When the spine is in rotational equilibrium, the sum of the torques about the left end (point O) must be zero. Thus, 

      
2

350 N 200 N 0
3 2

y

L L
T L

   
         

 

 Yielding sin12.0 562 N yT T   . 

 The tension in the back muscle is then 3
562 N

= 2.71 10   N 2.71 kN
sin12.0

T   


. 
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 The spine is also in translational equilibrium, so 0   0x x xF R T      and the compression force in the 

spine is 

   cos12.0 = 2.71  kN cos12.0 2.65 kNx xR T T     

8.18 In the free-body diagram of the foot  

given at the right, note that the force 

R  (exerted on the foot by the tibia) has been 

replaced by its horizontal and vertical 

components. Employing both conditions of  

equilibrium (using point O as the pivot point) 

gives the following three equations: 

 0  sin15.0 sin 0xF R T        

 or 

 
sin

sin 15.0

T
R





 [1] 

 0  700 N cos15.0 cos 0yF R T         [2] 

      0  700 N 18.0 cm cos 25.0 cm 18.0 cm 0O T           

 or 

  T = (1 800 N) cos  [3] 

 Substituting Equation [3] into Equation [1] gives 

  
1 800 N

sin cos
sin15.0

R  
 

   
 [4] 

 Substituting Equations [3] and [4] into Equation [2] yields 

    2
1 800 N

sin cos 1 800 N cos 700 N
tan15.0

  
 

   
 

 which reduces to: sin  cos  = (tan 15.0º) cos2  + 0.104 2. 
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 Squaring this result and using the identity 2 2sin 1 cos    gives 

        
22 4 2tan 15.0 1 cos 2 tan15.0 0.104 2 1 cos 0.104 2 0              

 In this last result, let u = cos2  and evaluate the constants to obtain the quadratic equation 

      21.071 8 0.944 2 0.010 9 0u u    

 The quadratic formula yields the solutions u = 0.869 3 and u = 1.011 7. 

 Thus, 

  1cos 0.869 3 21.2     or  1cos 0.011 7 83.8     

 We ignore the second solution since it is physically impossible for the human foot to stand with 

 the sole inclined at 83.8° to the floor. We are the left with:  = 21.2º. 

 Equation [3] then yields 

   31 800 N cos 21.2 1.68 10  NT      

 and Equation [1] gives 

 
 3

3
1.68 10  N sin 21.2

2.34 10  N
sin15.0

R
 

  


 

8.19 Consider the torques about an axis perpendicular to the page through the left end of the rod. 

 
       

 
100 N 3.00 m 500 N 4.00 m

0  
6.00 m cos 30.0

T


   

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  443 NT   

  0  sin 30.0 443 N sin 30.0x xF R T        

  Rx = 221 N toward the right 

 0  cos 30.0 100 N 500 N 0y yF R T         

  Ry = 600 N  (443 N) cos 30.0 = 217 N upward 

8.20 Consider the torques about an axis perpendicular to the page through the left end of the scaffold. 

            1 20  0 700 N 1.00 m 200 N 1.50 m 3.00 m 0T T        

 From which, T2 = 333 N. 

 Then, from Fy = 0, we have  

 T1+T2 – 700 N – 200 N = 0 

 or 

 T1 = 900 N – T2 = 900 N – 333 N = 567 N 

8.21 Consider the torques about an axis  

perpendicular to the page and through 

the left end of the plank. 

   = 0 gives 

             1700 N 0.500 m 294 N 1.00 m sin 40.0 2 .00 m 0T      

 or T1 = 501 N. 

 Then, 0xF   gives 3 1 cos 40.0° 0T T   , or 

     3 501 N cos 40.0 384 NT     

 From 0yF  , 2 1994 N sin 40.0 0T T    , 

 or  2 994 N 501 N sin 40.0 672 NT     . 
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8.22 (a) See the diagram below 

 (b) If x = 1.00 m, then 

  
        

       
left end

0  700 N 1.00 m 200 N 3.00 m

                        80.0 N 6.00 m sin 60.0° 6.00 m 0T

    

  
 

  giving T = 434 N. 

  Then, 0  cos 60.0° 0xF H T     , or  343 N cos 60.0° 172 NH    

  and  0  980 N + 343 N sin 60.0° 0yF V     , or V = 683 N. 

 (c) When the wire is on the verge of breaking, T = 900 N and 

  
      

       
maxleft end

 700 N 200 N 3.00 m

                 80.0 N 6.00 m 900 N sin 60.0° 6.00 m 0

x   

    

 

  which gives xmax = 5.14 m 

8.23 The required dimensions are as follows: 

  1 4.00 m cos 50.0° 2 .57 md    

  2 cos 50.0° 0.643  d d d   

  3 8.00 m sin 50.0 6.13 md     

 0yF   yields 1 200 N 800 N = 0F   , or F1 = 1.00  103 N. 

 When the ladder is on the verge of slipping, 
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   1maxs s sf f n F     or    30.600 1.00 10  N 600 Nf     

 Then, Fx = 0 gives F2 = 600 N to the left. 

 Finally, using an axis perpendicular to the page and through the lower end of the ladder  = 0, gives 

  –(200 N)(2.57 m) – (800 N)(0.643)d+(600 N)(6.13 m) = 0 

 or 

  
 

 

33.68 10 550  N m
6.15 m

0.643 800 N
d

  
   when the ladder is ready to slip 

8.24 (a) 

 (b) The point of intersection of two unknown forces is always a good choice as the pivot point in a torque calcu-

 lation. Doing this eliminates these two unknowns from the calculation (since they have zero lever arms about 

 the chosen pivot) and makes it .easier to solve the resulting equilibrium equation . 

 (c)   
hinge

0      0 0 cos sin 0
2

L
mg T L  

 
        

 

 (d) Solving the above result for the tension in the cable gives 

  
 2 cos

sin 2 tan

mg L mg
T

L



 
   

  or 
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   216.0 kg 9.80 m s

136 N
2 tan 30.0

T  


 

 (e) 0      0x xF F T      and 0      0y yF F mg      

 (f) Solving the above results for the components of the hinge force gives 

  Fx = T = 136 N and    216.0 kg 9.80 m s 157 NyF mg    

 (g) Attaching the cable higher up would allow the cable to bear some of the weight, thereby reducing the stress 

 on the hinge. It would also reduce the tension in the cable. 

8.25 Consider the free-body diagram of the  

material making up the center point in 

the rope given at the right. Since this 

material is in equilibrium, it is necessary 

to have Fx = 0 and Fy = 0, giving 

 0:xF   2 1sin sin 0T T     

 or T2 = T1, meaning that the rope has a uniform tension T throughout its length. 

 0:yF   cos cos 475 N 0T T     where 
   

2 2

0.500 m
cos

6.00 m 0.500 m

 


 

 and the tension in the rope (force applied to the car) is 

 
     

 

2 2

3
475 N 6.00 m 0.500 m475 N

2.86 10  N 2.86 kN
2 cos 2 0.500 m

T



      

8.26 (a)  
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 (b)   lower
end

0      0 0 cos sin 0
2

L
mg T L  

 
        

 

 or 
cos

cot
2 sin 2

mg mg
T






 
   

 

 (c) 0      0x sF T n       or sT n  [1] 

  0      0yF n mg      n mg  [2] 

  Substitute Equation [2] into [1] to obtain T = smg. 

 (d) Equate the results of parts (b) and (c) to obtain s = cot /2 

  This result is valid only at the critical angle  where the beam is on the verge of slipping 

  (i.e., where fs = (fs)max is valid.) 

 (e) At angles below the critical angle (where  
maxs sf f  is valid), the beam will slip. At larger angles, the 

static friction force is reduced below the maximum value, and it is no longer appropriate to use s  in the 

calculation. 

8.27 Consider the torques about an axis perpendicular  

to the page and through the point where the force  

T  acts on the jawbone. 

 0  (50.0 N) (7.50 cm) (3.50 cm) 0R     , which 

 yields 107 NR  . 

 Then,  0  50.0 N + 107 N 0yF T      , or 157 NT  . 

8.28 Observe that the cable is perpendicular to the boom. Then, using  = 0 for an axis perpendicular to the page and 

through the lower end of the boom gives 

      
3

1.20 kN cos 65° 2.00 kN cos 65° 0
2 4

L
T L L

   
         

 

 or .T = 1.47 kN 
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 From 0xF  , cos 25° 1.33 kN to the rightH T   

 and Fy = 0 gives 

 V = 3.20 kN – T sin 25 = 2.58 kN upward 

8.29 First, we resolve all forces into components parallel to and  

perpendicular to the tibia, as shown. Note that  = 40.0 and 

 wy = (30.0 N) sin 40.0 = 19.3 N 

 Fy = (12.5 N) sin 40.0 = 8.03 N 

 and 

 Ty = T sin 25.0 

 Using  = 0 for an axis perpendicular to the page and 

through the upper end of the tibia gives 

      sin 25.0° 19.3 N 8.03 N 0
5 2

d d
T d    

 or T = 209 N. 

8.30 When x = xmin , the rod is on the verge of slipping, so 

 
max

0.50s sf f n n    

 From 0xF  , cos 37° 0,   or   0.80n T n T   . Thus, 

 0.50 0.80 0.40f T T   

 From 0yF  , sin 37 2 0,   or f T w     

0.40 0.60 2 0T T w   , giving 2T w  
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 Using  = 0 for an axis perpendicular to the page and through the left end of the beam gives 

     min 2.0 m 2 sin 37° 4.0 m 0w x w w       , which reduces to xmin = 2.8 m. 

8.31 The moment of inertia for rotations about an axis is 2
i iI m r  , where ri is the distance mass mi is from that axis. 

 (a) For rotation about the x-axis, 

  
       

       

2 2

2 2 2

3.00 kg 3.00 m 2 .00 kg 3.00 m

2.00 kg 3.00 m 4.00 kg 3.00 m 99.0 kg m

xI  

   
 

 (b) When rotating about the y-axis, 

  
       

       

2 2

2 2 2

3.00 kg 2 .00 m 2 .00 kg 2 .00 m

2.00 kg 2.00 m 4.00 kg 2.00 m 44.0 kg m

yI  

   
 

 (c) For rotations about an axis perpendicular to the page through point O, the distance ri for each mass is 

     
2 2

2 .00 m 3.00 m 13.0  mir     

  Thus, 

     2 23.00 2.00 2.00 4.00  kg 13.0 m 143 kg mOI          

8.32 The required torque in each case is  = I. Thus, 

     2 299.0 kg m 1.50 rad s 149 N mx xI       

     2 244.0 kg m 1.50 rad s 66.0 N my yI       

 and 

     2 2143 kg m 1.50 rad s 215 N mO OI       
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8.33 (a) 
   net 2

net 2

0.330 m 250 Nsin 90
      87.8 kg m

0.940 rad s

rF
I I


 

 


        

 (b) For a solid cylinder, I = Mr2/2, so 

  
 
 

2

3
22

2 87.8 kg m2
1.61 10  kg

0.330 m

I
M

r


     

 (c)    2
0 0 0.940 rad s 5.00 s 4.70 rad st        

8.34 (a)  2 2
disk cylinder2 2 2 2I I I MR mr     or 2 2 2I MR mr   

 (b) g = 0 Since the line of action of the gravitational force passes through the rotation axis, it has zero lever arm 

 about this axis and zero torque. 

 (c) The torque due to the tension force is positive. Imagine gripping the cylinder with your right hand so 

 your fingers on the front side of the cylinder point upward in the direction of the tension force. The thumb of 

 your right hand then points toward the left (positive direction) along the rotation axis. Because I   , the  

 torque and angular acceleration have the same direction. Thus, a positive torque produces a 

 positive angular acceleration. When released, the center of mass of the yoyo drops downward, in the 

 negative direction. The translational acceleration is negative. 

 (d) Since, with the chosen sign convention, the translational acceleration is negative when the angular accelera-

 tion is positive, we must include a negative sign in the proportionality between these two quantities. Thus, we 

 write: a = r or  = –a/r 

 (e) Translation: 

     total       2 2yF m a T M m g M m a        [1] 

 (f) Rotational: 

        sin 90           or         I rT I rT I          [2] 

 (g) Substitute the results of (d) and (a) into Equation [2] to obtain 
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2

2
22

a r mr a
T I I MR

r r r

     
              

  or 

2

2

R m
T M as

r

  
       

 [3] 

  Substituting Equation [3] into [1] yields 

       
2

2 2 2M R r m a M m g M m a      
  

 or 
 

 
2

2

2 3 2

M m g
a

M M R r m

 


 
 

 (h) 
   

       

2

2
2

2 2.00 kg 1.00 kg 9.80 m s
2.72 m s

2 2.00 kg 2.00 kg 10.0 4.00 3 1.00 kg 2
a

   
  

 
 

 (i) From Equation [1],        2 22 5.00 kg 9.80 m s 2.72 m s 35.4 NT M m g a      . 

 ( j)  
   

2
2

2 2 1.00 m
0 2       0.857 s

2.72 m s

y
y t at t

a

 
      


 

8.35 (a) Consider the free-body diagrams of the cylinder and 

man given at the right. Note that we shall adopt a sign 

convention with clockwise and downward as the positive 

directions. Thus, both a and  are positive in the indicated  

directions and a = r. We apply the appropriate form of Newton’s 

second law to each diagram to obtain the following: 

 Rotation of Cylinder:       sin 90° , or ,I rT I T I r        

  so 

  2
1 1

2

a
T Mr

r r

   
       

 and 1

2
T Ma

 [1] 

  Translation of man: 

        yF ma mg T ma       or   T m g a   [2] 
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  Equating Equations [1] and [2] gives  1
2
Ma m g a  , or 

  
   

 

2

2
75.0 kg 9.80 m s

3.92 m s
2 75.0 kg+ 225 kg 2

mg
a

m M
  


 

 (b) From a = r, we have 

  
2

2
3.92 m s

9.80 rad s
0.400 m

a

r
     

 (c) As the rope leaves the cylinder, the mass of the cylinder decreases, thereby decreasing the moment of inertia. 

 At the same time, the weight of the rope leaving the cylinder would increase the downward force acting tan-

 gential to the cylinder, and hence increase the torque exerted on the cylinder. Both of these effects will cause 

 the acceleration of the system to increase with time. (The increase would be slight in this case, given the 

 large mass of the cylinder.) 

8.36 The angular acceleration is ( ) ( )f i it t          since 0f   

 Thus, the torque is ( )iI I t      . But, the torque is also  = – fr, so the magnitude of the required 

friction force is 

 
 

   
   

212 kg m 50 rev min 2  rad 1 min
21 N

0.50 m 6.0 s 1 rev 60 s

iI
f
r t

     
        

 

 Therefore, the coefficient of friction is 

 
21 N

0.30
70 N

k

f

n
     

8.37 (a)    0.800 N 30.0 m 24.0 N mF r       

 (b) 
   

2
22

24.0 N m
0.0356 rad s

0.750 kg 30.0 mI m r

 



     
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 (c)    2 230.0 m 0.0356 rad s 1.07 m sta r     

8.38    
22 21.80 kg 0.320 m 0.184 kg mI MR     

  net applied resistive I      , or F r f R I      

 yielding 

  
I f R

F
r

  
  

 (a) 
       2 2

2

0.184 kg m 4.50 rad s 120 N 0.320 m
872 N

4.50 10  m
F



 
 


 

 (b) 
       2 2

2

0.184 kg m 4.50 rad s 120 N 0.320 m
1.40 kN

2.80 10  m
F



 
 


 

8.39    
22 2

1 1
150 kg 1.50 m 169 kg m

2 2
I MR     

 and 

  
 

2
0.500 rev s 0 2  rad

 rad s
2 .00 s 1 rev 2

f i

t

   


   
    

 

 Thus, F r I     gives 

  
 2 2169 kg m  rad s

2
177 N

1.50 m

I
F

r





 
   

  
 

8.40 (a) It is necessary that the tensions T1 and T2 be different in 

 order to provide a net torque about the axis of the pulley 

 and produce and angular acceleration of the pulley. 

 Since intuition tells us that the system will accelerate in 

 the directions shown in the diagrams at the right 

 when m2 > m1, it is necessary that T2 > T1. 



Page 8.23 

 (b) We adopt a sign convention for each object with the positive 

 direction being the indicated direction of the acceleration of that 

 object in the diagrams at the right. Then, apply Newton’s 

 second law to each object:  

  For 1 1 1 1 1:            ym F m a T m g m a       or  1 1T m g a   [1] 

  For 2 2 2 2 2:            ym F m a m g T m a     m2  or  2 2T m g a   [2] 

  For 2 1:           M I rT rT I        or 2 1T T I r   [3] 

 Substitute Equations [1] and [2], along with the relations 2 2  and I Mr a r  , into Equation [3] to obtain 

     
2

2 1
2 2

Mr a Ma
m g a m g a

r r

 
      

 or  1 2 2 1
2

M
m m a m m g

 
     

 

 and 

  
     

 

2
2 1 2

1 2

20.0 kg 10.0 kg 9.80 m s
2.88 m s

2 20.0 kg 10.0 kg + 8.00 kg 2

m m g
a

m m M


  

  

 

 (c) From Equation [1]:    2 2
1 10.0 kg 9.80 m s 2.88 m s 127 NT    . 

  From Equation [2]:    2 2
2 20.0 kg 9.80 m s 2.88 m s 138 NT    . 

8.41 The initial angular velocity of the wheel is zero, and the final angular velocity is 

  
50.0 m s

40.0 rad s
1.25 m

f
r

   
v

 

 Hence, the angular acceleration is 

  2
40.0 rad s 0

83.3 rad s
0.480 s

f i

t

 


 
  


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 The torque acting on the wheel is kf r   , so I   gives 

  
   2 2

3
110 kg m 83.3 rad s

7.33 10  N
1.25 m

k

I
f

r

 
     

 Thus, the coefficient of friction is 

  
3

4

7.33 10  N
0.524

1.40 10  N

k
k

f

n



  


 

8.42 (a) The moment of inertia of the flywheel is 

     
22 3 2

1 1
500 kg 2 .00 m 1.00 10  kg m

2 2
I MR      

 and the angular velocity is 

  
rev 2  rad 1 min

5000 524 rad s
min 1 rev 60 s




     
           

 

 Therefore, the stored kinetic energy is 

     
22 3 2 8

stored

1 1
1.00 10  kg m 524 rad s 1.37 10  J

2 2
KE I       

 (b) A 10.0-hp motor supplies energy at the rate of 

    3
746 W

10.0 hp 7.46 10  J s
1 hp

 
    

P  

 The time the flywheel could supply energy at this rate is 

  
8

stored 4
3

1.37 10  J
1.84 10  s 5.10 h

7.46 10  J s

KE
t


    

P
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8.43 The moment of inertia of the cylinder is 

   
22 2 2

2

1 1 1 800 N
1.50 m 91.8 kg m

2 2 2 9.80 m s

w
I MR R

g

   
          

 

 The angular acceleration is given by 

  
  

2
2

50.0 N 1.50 m
0.817 rad s

91.8 kg m

F R

I I





   


 

 At t = 3.00 s, the angular velocity is 

     20 0.817 rad s 3.00 s 2 .45 rad si t        

 and the kinetic energy is 

     
22 2

rot

1 1
91.8 kg m 2.45 rad s 276 J

2 2
KE I     

8.44 (a) Hoop:    
22 24.80 kg 0.230 m 0.254 kg mI MR     

  Solid Cylinder:    
22 2

1 1
4.80 kg 0.230 m 0.127 kg m

2 2
I MR     

  Solid Sphere:    
22 2

2 2
4.80 kg 0.230 m 0.102 kg m

5 5
I MR     

  Thin, Spherical, Shell:    
22 2

2 2
4.80 kg 0.230 m 0.169 kg m

3 3
I MR     

 (b) When different objects of mass M and radius R roll 

 without slipping   a R   down a ramp, the one with the largest  

 translational acceleration a will have the highest  

 translational speed at the bottom. To determine the 

 translational acceleration for the various objects, 

 consider the free-body diagram at the right: 
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        sinxF Ma Mg f Ma      [1] 

    2         or   I f R I a R f Ia R      [2] 

  Substitute Equation [2] into [1] to obtain  

  2sinMg Ia R Ma    or 
2

sinMg
a

M I R





 

  Since M, R, g are  the same for all of the objects, we see that the translational acceleration (and hence the 

 translational speed) increases as the moment of inertia decreases. Thus, the proper rankings from highest to 

 lowest by translational speed will be: 

  Solid sphere; solid cylinder; thin, spherical, shell; and hoop 

 (c) When an object rolls down the ramp without slipping, the friction force does no work and mechanical energy 

is conserved. Then, the total kinetic energy gained equals the gravitational potential energy given up: 

r t gKE KE PE Mgh     and 1 2
2rKE Mgh M  v , where h is the vertical drop of the ramp and  

is the translational speed at the bottom. Since M, g, and h are the same for all of the objects, the rotational 

kinetic energy decreases as the translational speed increases. Using this fact, along with the result of Part (b), 

we rank the object’s final rotational kinetic energies, from highest to lowest, as: 

 hoop; thin, spherical, shell; solid cylinder; and solid sphere 

8.45 (a) Treating the particles on the ends of the rod as point masses, the total moment of inertia of the rotating 

system is 2 2 2
rod 3 4 rod 3 412 2 2( ) ( )I I I I m L m L m L      . If the mass of the rod can be ignored, 

this reduces to 

       
2

2 2
3 40 3.00 kg 4.00 kg 0.500 m 1.75 kg m

2

L
I m m

 
        

 

 and the rotational kinetic energy is 

     
22 2

1 1
1.75 kg m 2.50 rad s 5.47 J

2 2
rKE I     

 (b) If the rod has mass rod 2.00 kgm   

     
2 2 2

1
2.00 kg 1.00 m 1.75 kg m 1.92 kg m

12
I       
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 and 

     
22 2

1 1
1.92 kg m 2.50 rad s 6.00 J

2 2
rKE I     

8.46 Using conservation of mechanical energy, 

     trans rot trans rotg g
f i

KE KE PE KE KE PE      

 or 

   2 2
1 1

0 0 0 sin
2 2

tM I Mg L     v  

 Since 22 5I MR  for a solid sphere and t Rv  when rolling without slipping, this becomes 

   2 2 2 2
1 1

sin
2 5
MR MR Mg L     

 and reduces to 

  
   

 

2

22

10 9.8 m s 6.0 m sin 3710 sin
36 rad s

7 7 0.20 m

gL

R





    

8.47 (a) Assuming the disk rolls without slipping, the friction force between the disk and the ramp does no work. In 

this case, the total mechanical energy of the disk is constant with the value 

0 sin( )i g iE KE PE Mgh MgL      . When the disk gets to the bottom of the ramp, 0gPE   and 

sinf t rKE KE KE E MgL     . Also, since the disk does not slip, R  v  and 

  

2

2 2 2
1 1 1 1 1 1

2 2 2 2 2 2
r tKE I MR M KE

R


     
             

v
v  

 Then, 

  total

1
sin

2
t tKE KE KE E MgL      or 

3 1

2 2
M 2 M

 
  

v singL   
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 and 

  
   24 9.80 m s 4.50 m sin15.04 sin

3.90 m s
3 3

gL  
  v  

 (b) The angular speed of the disk at the bottom is 

  
3.90 m s

15.6 rad s
0.250 mR

   
v

 

8.48 (a) Assuming the solid sphere starts from rest, and taking y =0 at the level of the bottom of the incline, the total 

 mechanical energy will be split among three distinct forms of energy  g
i

E PE mgh   as the sphere rolls 

 down the incline. These are 

  2
1

rotational kinetic energy, 
2
I  

  2
1

translational kinetic energy, 
2
mv  

  and 

  gravitational potential energy, mgy 

  where y is the current height of the center of mass of the sphere above the level of the bottom of the incline. 

(b) The force of static friction, exerted on the sphere by the incline and directed up the incline, exerts a torque 

about the center of mass giving the sphere an angular acceleration. 

 (c) 1 12 2
2 2

 and t rKE M KE I v  where Rv  (since the sphere rolls without slipping) and 

2 2
5

I MR  for a solid sphere. Therefore, 

  
 

   

2 22 2 2

22 2 2 2

2 52 2

2 2 2 5

r

t r

MRKE I MR

KE KE M I M R MR

 

  
  

  v 2 25MR  2 22MR 

2

7
  
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8.49 Using 1 2
2

0net f i fW KE KE I    , we have 

 
   

4 2

2 5.57 N 0.800 m2 2
149 rad s

4.00 10  kg m

net
f

W F s

I I





   

 
 

8.50 The work done on the grindstone is    netW F s F r F r           . 

 Thus, 1 12 2
2 2net f iW I I       , or 

      22
2  rad 1

25.0 N m 15.0 rev 0.130 kg m 0
1 rev 2

f




 
     

 

 This yields 

 
rad 1 rev

190 30.3 rev s
s 2  rad

f


  
       

 

8.51 (a)    
22

1 1
10.0 kg 10.0 m s 500 J

2 2
trans tKE mv    

 (b) 

  

2
2 2

2

22

1 1 1

2 2 2

1 1
10.0 kg 10.0 m s 250 J

4 4

t
rot

t

v
KE I mR

R

mv


  

        

  

 

 (c) 750 Jtotal trans rotKE KE KE    

8.52 As the bucket drops, it loses gravitational potential energy. The spool  

gains rotational kinetic energy and the bucket gains translational kinetic  

energy. Since the string does not slip on the spool, r   where r is the  
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radius of the spool. The moment of inertia of the spool is 1 2
2

I Mr ,  

where M is the mass of the spool. Conservation of energy gives 

    t r g t r g
f i

KE KE PE KE KE PE      

 2 2
1 1

0 0
2 2

f im I mgy mgy       

 or 

    2 2 2
1 1 1

2 2 2
i fm r Mr mg y y 

 
    

 

 This gives 

 
 

 
     

   

2

21 2 1
2 2

2 2 3.00 kg 9.80 m s 4.00 m
10.9 rad s

3.00 kg+ 5.00 kg 0.600 m

i fmg y y

m M r



  

  
 

 

8.53 (a) The arm consists of a uniform rod of 10.0 m length and the mass of the seats at the lower end is negligible. 

 The center of gravity of this system is then located at the 

 geometric center of the arm, located 5.00 m from the upper end. 

  From the sketch at the right, the height of the center of gravity above the zero level is 

  10.0 m 5.00 m coscgy   . 

 (b) When 45.0   ,  10.0 m 5.00 m cos 45.0 6.46 mcgy       

 and 

       2 4365 kg 9.80 m s 6.46 m 2.31 10  Jg cgPE mgy     

 (c) In the vertical orientation,  = 0 and cos = 1, giving 

 10.0 m 5.00 m 5.00 mcgy    . Then, 

       2 4365 kg 9.80 m s 5.00 m 1.79 10  Jg cgPE mgy     
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 (d) Using conservation of mechanical energy as the arm starts  

 from rest in the 45° orientation and rotates about the upper  

 end to the vertical orientation gives 

     2
1

0
2

end f cg cg
f i

I mg y mg y     or 
   2 cg cg

i f

f
end

mg y y

I


 


  


 [1] 

  For a long, thin rod: 2 3endI mL . Equation [1] then becomes 

  

2

f

m

 
   cg cg

i f
g y y

m

 


  
   

   

 

22

2

2

6

3

6 9.80 m s 6.46 m 5.00 m
0.927 rad s

10.0 m

cg cg
i f

g y y

LL

 


  



 

 

  Then, from r  , the translational speed of the seats at the lower end of the rod is 

     10.0 m 0.927 rad s 9.27 m s    

8.54 (a)        
22 22.40 kg 0.180 m 35.0 rad s 2.72 kg m sL I MR       

 (b)      
22 2

1 1
2.40 kg 0.180 m 35.0 rad s 1.36 kg m s

2 2
L I MR 

 
      

 

 (c)      
22 2

2 2
2.40 kg 0.180 m 35.0 rad s 1.09 kg m s

5 5
L I MR 

 
      

 

 (d)      
22 2

2 2
2.40 kg 0.180 m 35.0 rad s 1.81 kg m s

3 3
L I MR 

 
      

 

8.55 (a) The rotational speed of Earth is 
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  5
4

2  rad 1 d
7.27 10  rad s

1 d 8.64 10  s
E


  

    
 

  

     

2

2
24 6 5 33

2

5

2
5.98 10  kg 6.38 10  m 7.27 10  rad s 7.08 10  J s

5

spin sphere E E E EL I M R 



 
    

 
       
 

 

 (b) For Earth’s orbital motion, 

  7
7

2  rad 1 y
1.99 10  rad s

1 y 3.156 10  s
orbit


  

    
 

  and using data from Table 7.3, we find 

  
 

     

2

2
24 11 7 405.98 10  kg 1.496 10  m 1.99 10  rad s 2.67 10  J s

orbit point orbit E orbit orbitL I M R 



 

      
 

8.56 (a) Yes, the bullet has angular momentum about an axis through the  

 hinges of the door before the collision. Consider the sketch at  

 the right, showing the bullet the instant before it hits the door. The  

 physical situation is identical to that of a point mass mg moving in  

 a circular path of radius r with tangential speed t = i. For that  

 situation the angular momentum is 

   2 i
i i i B B iL I m r m r

r


 

 
    

 

  and this is also the angular momentum of the bullet about the axis  

 through the hinge at the instant just before impact. 

 (b) No, mechanical energy is not conserved in the collision. The bullet embeds itself in the door with the two 

 moving as a unit after impact. This is a perfectly inelastic collision in which a significant amount of mechanic

 cal energy is converted to other forms, notably thermal energy. 
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 (c) Apply conservation of angular momentum with i B iL m r  as discussed in part (a). After impact, 

   1 2 2
2f f f door bullet f door B fL I I I M L m r        where L = 1.00 m = the width of the door 

and r = L – 10.0 cm = 0.900 m. Then, 

  
 

     

       

3

2 22 2

0.005 kg 0.900 m 1.00 10  m s
      

1 1
18.0 kg 1.00 m 0.005 kg 0.900 m

3 3

B i
f i f

door B

m r
L L

M L m r





   

 
 

  yielding 0.749 rad sf  . 

 (d) The kinetic energy of the door-bullet system immediately after impact is 

           
2 2 22

1 1 1
18.0 kg 1.00 m 0.005 kg 0.900 m 0.749 rad s

2 2 3
f f fKE I 

 
   

 
 

  or 1.68 JfKE  . 

  The kinetic energy (of the bullet) just before impact was 

     
2

2 3 3
1 1

0.005 kg 1.00 10  m s 2.50 10  J
2 2

i B iKE m       

8.57 Each mass moves in a circular path of radius r = 0.500 m/s about the center of the connecting rod. Their angular 

speed is 

 
5.00 m s

10.0 m s
0.500 mr


     

 Neglecting the moment of inertia of the light connecting rod, the angular momentum of this rotating system is 

      
22 2

1 2 4.00 kg 3.00 kg 0.500 m 10.0 rad s 17.5 J sL I m r m r           

8.58 Using conservation of angular momentum, aphelion perihelionL L . 

 Thus,    2 2
a a p pmr mr  . Since  = 1/r at both aphelion and perihelion, this is equivalent to 

    2 2
a a a p p pmr r mr r  , giving 
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  
0.59 A.U.

54 km s 0.91 km s
35 A.U.

p

a p
a

r

r
 

   
       

 

8.59 The initial moment of inertia of the system is 

    22 24 1.0 m 4.0 mi i iI m r M M    
  

 

 The moment of inertia of the system after the spokes are shortened is 

    22 24 0.50 m 1.0 mf f fI m r M M    
  

 

 From conservation of angular momentum, If f = Ii i, or 

   4 2.0 rev s 8.0 rev si
f i

f

I

I
 

 
   
 

 

8.60 From conservation of angular momentum:    - - - -child m g r f child m g r i
f i

I I I I     

 where 
2

- - 275 kg mm g rI    is the constant moment of inertia of the merry-go-round. 

 Treating the child as a point object, 2
childI mr  where r is the distance the child is from the rotation axis. 

Conservation of angular momentum then gives 

 
   

   
 

22 2
- -

22 2
- -

25.0 kg 1.00 m 275 kg m
14.0 rev min

25.0 kg 2.00 m 275 kg m

i m g r

f i
f m g r

mr I

mr I
 

    
   

      

 

 or 

 
rev 2  rad 1 min

11.2 1.17 rad s
min 1 rev 60.0 s

f




   
       

 

8.61 The moment of inertia of the cylinder before the putty arrives is 

   
22 2

1 1
10.0 kg 1.00 m 5.00 kg m

2 2
iI MR     
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 After the putty sticks to the cylinder, the moment of inertia is 

   
22 2 25.00 kg m 0.250 kg 0.900 m 5.20 kg mf iI I mr        

 Conservation of angular momentum gives Iff = Iii, or 

  
2

2

5.00 kg m
7.00 rad s 6.73 rad s

5.20 kg m

i
f i

f

I

I
 

   
       

 

8.62 The total moment of inertia of the system is 

  2 22 3.0 kg mtotal masses studentI I I mr      

 Initially, r = 1.0 m, and   
2 2 22 3.0 kg 1.0 m 3.0 kg m 9.0 kg miI

     
  

. 

 Afterward, r = 0.30 m, so 

   
2 2 22 3.0 kg 0.30 m 3.0 kg m 3.5 kg mfI

     
  

 

 (a) From conservation of angular momentum, If f = Ii i, or 

   
2

2

9.0 kg m
0.75 rad s 1.9 rad s

3.5 kg m

i
f i

f

I

I
 

   
       

 

 (b)   
22 2

1 1
9.0 kg m 0.75 rad s 2.5 J

2 2
i i iKE I      

    
22 2

1 1
3.5 kg m 1.9 rad s 6.3 J

2 2
f f fKE I      

8.63 The initial angular velocity of the puck is 

  
  0.800 m s rad

2 .00 
0.400 m s

t i
i

ir


     

 Since the tension in the string does not exert a torque about the axis of revolution, the angular 
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 momentum of the puck is conserved, or If f = Ii i. 

 Thus, 

  
22

2

0.400 m
2 .00 rad s 5.12 rad s

0.250 m

i i
f i i

f f

I mr

I mr
  

     
            

 

 The net work done on the puck is 

    2 2 2 2 22 2 2 2 2
1 1 1

2 2 2 2
net f i f f i i f f i i f f i i

m
W KE KE I I mr mr r r                 

 

 or 

 
 

       
2 2 2 20.120 kg

0.250 m 5.12 rad s 0.400 m 2 .00 rad s
2

netW   
  

 

 This yields 25.99 10  JnetW   . 

8.64 For one of the crew, c cF m a   becomes  2 2/t in m v r mr  . We require n = mg, so the initial angular 

velocity must be /i g r  . From conservation of angular momentum, f f i iI I   or ( / )f i f iI I   . Thus, 

the angular velocity of the station during the union meeting is 

  
  

  

28 2

28 2

5.00 10  kg m 150 65.0 kg 100 m
1.12

5.00 10  kg m 50 65.0 kg 100 m

i
f

f

I g g g

I r r r


     
    
      

 

 The centripetal acceleration experienced by the managers still on the rim is 

       2 22 2 2 212.3 m s 1.12 1.12 9.80 m s 12.3 m sc f

g
a r r

r
     

8.65 (a) From conservation of angular momentum, Iff = Iii, so 

  
1

1 2

i
f i o

f

I I

I I I
  

   
      
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 (b)  
2

1 1 12 2 2
1 2 1

1 2 1 2 1 2

1 1 1

2 2 2
f f f o o i

I I I
KE I I I I KE

I I I I I I
  

      
                  

 

  or 

  
1

1 2

f

i

KE I

KE I I



 

  Since this is less than 1.0, kinetic energy was lost. 

8.66 The initial angular velocity of the system is 

 
rev 2  rad

0.20 0.40  rad s
s 1 rev

i


 

   
       

 

 The total moment of inertia is given by 

     
22 2 2

1 1
80 kg 25 kg 2 .0 m

2 2
man cylinderI I I mr MR r       

 Initially, the man is at 2 .0 mr   from the axis, and this gives 2 23.7 10  kg miI    . At the end, when r = 1.0, 

the moment of inertia is 
2 21.3 10  kg mfI    . 

 (a) From conservation of angular momentum, If f = Ii i, or 

   
2 2

2 2

3.7 10  kg m
0.40  rad s 1.14  rad s 3.6 rad s

1.3 10  kg m

i
f i

f

I

I
   

    
         

 

 (b) The change in kinetic energy is 1 12 2
2 2f f f iKE I I    , or 

     
2 2

2 2 2 2
1 rad 1 rad

1.3 10  kg m 1.14  3.7 10  kg m 0.40  
2 s 2 s

KE  
   

            
 

  or 25.4 10  JKE   . The difference is the work done by the man as he walks inward. 
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8.67 (a) The table turns counterclockwise, opposite to the way the woman walks. Its angular momentum cancels that 

 of the woman so the total angular momentum maintains a constant value of 0total woman tableL L L   . 

  Since the final angular momentum is 0total w w t tL I I    , we have 

  
2

w w w w
t w w

t t t

I m r m r

I I r I


  

      
                 

 

  or 

  
   

 
2

60.0 kg 2 .00 m
1.50 m s 0.360 rad s

500 kg m
t

 
    

  
 

  Hence, 0.360 rad s  counterclockwisetable   . 

 (b) 2 2
1 1

0
2 2

net f w t tW KE KE m I        

       
2 22

1 1
60.0 kg 1.50 m s 500 kg m 0.360 rad s 99.9 J

2 2
netW      

8.68 (a) In the sketch at the right, choose an axis perpendicular to  

 the page and passing through the indicated pivot. Then, 

  with  = 30.0, the lever arm of the force P  is observed to be 

 
5.00 cm 5.00 cm

5.77 cm
cos cos 30.0

  


 

 and  = 0 gives 

     5.77 cm 150 N 30.0 cm 0P    

 so 

 
  150 N 30.0 cm

780 N
5.77 cm

P    
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 (b) 0 cos 30.0 0yF n P      , giving 

   cos 30.0 780 N cos30.0 675 Nn P      

  0 sin 30.0 0xF f F P       , or 

   sin 30.0 780 N sin 30.0 150 N 240 Nf P F        

  The resultant force exerted on the hammer at the pivot is 

     
2 22 2 240 N 675 N 716 NR f n      

  at 1 1tan ( / ) tan (675 N/240 N) 70.4n f      , or 

  716 N  at 70.4  above the horizontal to the right R  

8.69 (a) Since no horizontal force acts on the child-boat system, the center of gravity of this system will remain sta-

 tionary, or 

  cg  constantchild child boat boat

child boat

m x m x
x

m m


 


 

  The masses do not change, so this result becomes mchild xchild + mboatxboat = constant. 

  Thus, as the child walks to the right, the boat will move to the left . 

 (b) Measuring distances from the stationary pier, with away from the pier being positive, the child is initially at

 (xchild)i = 3.00 m and the center of gravity of the boat is at (xboat)i = 5.00. At the end, the child is at the right 

 end of the boat, so (xchild)f = (xboat)f + 2.00 m. Since the center of gravity of the system does not move, 

  we have     child child boat boat child child boat boatf i
m x m x m x m x   , or 

         2.00 m 3.00 m 5.00 mchild child boat child child boatf f
m x m x m m    

  
 

  and 
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   
   3.00 m 5.00 m 2.00 mchild boat

child f
child boat

m m
x

m m

 



 

   
       40.0 kg 3.00 m 70.0 kg 5.00 m 2.00 m

5.55 m
40.0 kg 70.0 kg

child f
x

 
 


 

 (c) When the child arrives at the right end of the boat, the greatest distance from the pier that he can reach is 

 max 1.00 m 5.55 m 1.00 m 6.55 mchild f
x x       This leaves him 0.45 m short of reaching the 

turtle . 

8.70 (a) Consider the free-body diagram of the block given at  

 the right. If the +x-axis is directed down the incline,  

 Fx = max gives 

  sin 37.0 tmg T m a   , or  sin 37.0 tT m g a    

  

   2 212.0 kg 9.80 m s sin 37.0 2.00 m s

46.8 N

T    
 



 

 (b) Now, consider the free-body diagram of the pulley.  

 Choose an axis perpendicular to the page and passing  

 through the center of the pulley,  = I  gives 

  
ta

T r I
r

 
   

 
 

  or 

  
   

2
2

2
2

46.8 N 0.100 m
0.234 kg m

2.00 m st

T r
I

a


     

 (c)  
22.00 m s

0 2.00 s 40.0 rad s
0.100 m

t
i

a
t t

r
  

  
           

 

8.71 If the ladder is on the verge of slipping,  
maxs sf f n   at both the  



Page 8.41 

floor and the wall. 

 From Fx = 0, we find f1 – n2 = 0, or 

 n2 = sn1 [1] 

 Also, Fx = 0 gives n1 – w + sn2.= 0 

 Using Equation [1], this becomes 

  1 1 0s sn w n     

 or 

 1 2
0.800

1 1.25s

w w
n w


  


  [2] 

 Thus, Equation [1] gives 

  2 0.500 0.800 0.400n w w    [3] 

 Choose an axis perpendicular to the page and passing through the lower end of the ladder. Then,  = 0 yields 

    2 2cos sin cos 0
2

L
w n L f L  
 

     
 

 Making the substitutions n2 = 0.400 w and 2 2 0.200sf n w  , this becomes 

        cos 0.400 sin 0.200 cos 0
2

L
w w L w L  
 

     
 

 and reduces to 

 
0.500 0.200

sin cos
0.400

 
 

   
 

 Hence, tan  = 0.750 and  = 36.9 . 

8.72  
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 We treat each astronaut as a point object, m, moving at speed v in a circle of radius r = d/2. Then the total angular 

momentum is 

  2
1 2 2 2L I I mr m r

r


  

  
       

 

 (a)      2 2 75.0 kg 5.00 m s 5.00 mi i iL m r   

  3 23.75 10  kg m siL     

 (b) 2 2 2
1 1 2 2

1 1 1
2

2 2 2
i i i iKE m m m  

 
     

 

    
2 375.0 kg 5.00 m s 1.88 10  J= 1.88 kJiKE     

 (c) Angular momentum is conserved: 3 23.75 10  kg m sf iL L    . 

 (d) 
    

3 23.75 10  kg m s
10.0 m s

2 75.0 kg 2.50 m2

f

f

f

L

mr


 
    

 (e)   
22

1
2 75.0 kg 10.0 m s 7.50 kJ

2
f fKE m

 
    

 

 (f) 5.62 kJnet f iW KE KE    

8.73 (a) 2
2

i

d
L M M d 

  
     

 

 (b) 2 2
1

2
2

i iKE M M 
 

   
 

 (c) f iL L M d   
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 (d) 
   

2
2 42

f

f

f

L M d

M dMr


     

 (e)  
22 2

1
2 2 4

2
f fKE M M M  

 
    

 

 (f) 23net f iW KE KE M    

8.74 Choose an axis that is perpendicular to the page  

and passing through the left end of the scaffold.  

Then  = 0gives 

 

       
       

 

750 N 1.00 m 345 N 1.50 m

      500 N 2 .00 m 1000 N 2 .50 m

                      3.00 m 0RT

 

 

 

 

 or 

 31.59 10  N= 1.59 kNRT    

 Then, 

   30  750 345 500 1000  N 1.59 10  N 1.01 kNy LF T           

8.75 (a) From conservation of angular momentum, f f f i i iL I I L    , or 

   
2 22 2 9

5

2 32
5

1.50 10  m
0.010 0 rev d

15.0 10  m

ii i
f i i i

f ff

MRI R

I RMR
   

      
              

 

  giving 

  8
rev

1.00 10  f  
d

2  rad

1 rev

 1 d 
  

3
4

7.27 10  rad s
8.64 10  s

 
   

 

 (b)      3 3 815.0 10  m 7.27 10  rad s 1.09 10  m st f ff
R        (which is about one-third the 
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speed of light). 

8.76 (a) Taking PEg = 0 at the level of the horizontal axis passing 

 through the center of the rod, the total energy of the rod 

 in the vertical position is 

  
     1 2 1 20

gE KE PE

m g L m g L m m gL

 

      
 

 (b) In the rotated position of Figure P8.76b, the rod is 

 in motion and the total energy is 

  2
1 1 2 2

1

2
r g totalE KE PE I m gy m gy       Figure P8.76 

       2 2 2
1 2 1 2

1
sin sin

2
m L m L m g L m g L         

  or 

  
 

 
2 2

1 2
1 2 sin

2

m m L
E m m gL





    

 (c) In the absence of any nonconservative forces that do work on the rotating system, the total mechanical energy 

 of the system is constant. Thus, the results of parts (a) and (b) may be equated to yield an equation that can be 

 solved for the angular speed, , of the system  as a function of angle . 

 (d) In the vertical position, the net torque acting on the system is zero, net = 0. This is because the lines of action 

 of both external gravitational forces (m1g and m2g)pass through the pivot and hence have zero lever arms 

 about the rotation axis. In the rotated position, the net torque (taking clockwise as positive) is 

       1 2 1 2cos cos cosnet m g L m g L m m gL          

 Note that the net torque is not constant as the system rotates. Thus, the angular acceleration of the rotating 

system, given by  = net/I, will vary as a function of . Since a net torque of varying magnitude acts on the 

system, the angular momentum of the system will change at a nonuniform rate. 

 (e) In the rotated position, the angular acceleration is 
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   

 
1 2 1 2

2 2
1 2 1 2

cos cos
net

m m gL m m g

I m L m L m m L

 


 
  

 
 

8.77 Let mp be the mass of the pulley, m1 be the mass of the sliding block, and m2 be the mass of the counterweight. 

 (a) The moment of inertia of the pulley is 2
1

2
p pI m R  and its angular velocity at any time is,  = /Rp where  

is the linear speed of the other objects. The friction force retarding the sliding block is 

 1k k kf n m g    

 Choose 0gPE   at the level of the counterweight when the sliding object reaches the second photogate. 

Then, from the work–energy theorem, 

    nc trans rot g trans rot g
f i

W KE KE PE KE KE PE       

 

 

 

2

2 2
1 2 2

2
2 2

1 2 22

1 1 1
0

2 2 2

1 1 1
                                

2 2 2

f

k f p p
p

i
i p p

p

f s m m m R
R

m m m R m gs
R







  
          

  
        

 

 or 

  2 2
1 2 1 2 2 1

1 1 1 1

2 2 2 2
p f p i km m m m m m m gs m g s  

   
             

 

 This reduces to 

 
 2 12

1 2

2

1

2

k
f i

p

m m gs

m m m


 


 

 
 

 and yields 

 
   2 22 0.208 kg 9.80 m s 0.700 mm

0.820 1.63 m s
s 1.45 kg

f
 

    
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 (b) 
1.63 m s

54.2 rad s
0.030 0 m

f

f
p

v

R
     

8.78 (a) The frame and the center of each wheel moves forward at  = 3.35 m/s and each wheel also turns at angular 

 speed  = /R. The total kinetic energy of the bicycle is KE = KEt + KEr, or 

  

 

   

2 2

2
2 2

2

1 1
2 2

2 2

1 1
2

2 2

frame wheel wheel

frame wheel wheel

KE m m I

m m m R
R

 




 
     

 
     

 

  This yields 

  

 

   

2

2

1
3

2

1
8.44 kg 3 0.820 kg 3.35 m s 61.2 J

2

frame wheelKE m m v 

    

 

 (b) Since the block does not slip on the roller, its forward speed must  

 equal that of point A, the uppermost point on the rim of the roller. 

  That is, AE
  v  where AE

v  is the velocity of A relative to Earth. 

  Since the roller does not slip on the ground, the velocity of point O 

 (the roller center) must have the same magnitude as the tangential  

 speed of point B (the point on the roller rim in contact with the 

  ground). That is, OE OR  v  . Also, note that the velocity of point A relative 

 to the roller center has a magnitude equal to the tangential speed R, or AO OR  v . 

 From the discussion of relative velocities in Chapter 3, we know that AE AO OE
 v v v . Since all of these 

velocities are in the same direction, we may add their magnitudes getting AE AO OE
 v v v , or 

2 2O O O R        . 

  The total kinetic energy is KE = KEt + KEr, or 
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2

2 2

2
2 2

2

1 1 1
2 2

2 2 2 2

1 1 1

2 4 2 4

stone tree tree

stone tree tree

KE m m I

m m m R
R


 




    
           

  
        

 

  This gives 2
1 3

2 4
stone treeKE m m 

 
   

, or 

     
21 3

844 kg 82.0 kg 0.335 m s 50.8 J
2 4

KE
 

   
 

 

8.79 We neglect the weight of the board and assume that  

the woman’s feet are directly above the point of support 

by the rightmost scale. Then, the free-body diagram 

for the situation is as shown at the right. 

 From 0yF  , we have 1 2 0g gF F w   , or 380 N 320 N=700 Nw   . 

 Choose an axis perpendicular to the page and passing through point P. 

 Then 0   gives  1 2 .00 m 0gw x F    or 

 
     1 2.00 m 380 N 2.00 m

1.09 m
700 N

gF
x

w
    

8.80 Choose PEg = 0 at the level of the base of the ramp. Then, conservation of mechanical energy gives 

    trans rot g trans rot g
f i

KE KE PE KE KE PE      

     
2

2 2
1 1

0 0 sin 0
2 2

i
img s m mR

R


 

 
       

 

 or 

 
   

 

2 2
2 2 2

2

3.0 m 3.0 rad s
24 m

sin sin 9.80 m s sin 20

i iR
s

g g

 

 
   


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8.81 Choose an axis perpendicular to the page and passing  

through the center of the cylinder. Then, applying  = I  

to the cylinder gives 

   2 2
1 1

2
2 2

taT R MR MR
R


    

            
 or

1

4
tT Ma  [1] 

 Now Fy = may apply to the falling objects to obtain 

    2 2 2 tm g T m a   or t

T
a g

m
   [2] 

 (a) Substituting Equation [2] into [1] yields 

  
4 4

Mg M
T T

m

 
    

 

  which reduces to 
4

Mmg
T

M m



 

 (b) From Equation [2] above, 

  
1 4

4 4 4
t

Mmg Mg mg
a g g

m M m M m M m

 
        

 

8.82 (a) A smooth (that is, frictionless) wall cannot exert a force parallel to its surface. Thus, the only force the verti-

 cal wall can exert on the upper end of the ladder is a horizontal normal force. 

 (b) Consider the free-body diagram of the ladder given at the 

 right. If the rotation axis is perpendicular to the page and 

 passing through the lower end of the ladder, the lever 

 arm of the normal force 2n  that the wall exerts on the 

 upper end of the ladder is 

  d2 = L sin  
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 (c) The lever arm of the force of gravity, m g , acting on the ladder is 

     2 cos cos 2d L L    

 (d) Refer to the free-body diagram given in part (b) of this solution and make use of the fact that the ladder is in 

 both translational and rotational equilibrium. 

  10  0y pF n m g m g       or  1 pn m m g   

  When the ladder is on the verge of slipping,    1 1 1max s s pf f n m m g     . 

  Then 2 10  xF n f    , or  2 s pn m m g   . 

  Finally,    20  sin ( /2) cos cos 0pn L m g L m gx          where x is the maximum distance 

the painter can go up the ladder before it will start to slip. Solving for x gives 

  
 2 sin cos

2
1 tan

cos 2
s

p p p

L
n L m g

m m
x L L

m g m m

 

 


 
       

      
   

 

  and using the given numerical data, we find 

     
 

 
30 kg 30 kg

0.45 1 4.0 m tan 53 4.0 m 2.5 m
80 kg 2 80 kg

x
  

          
 

8.83 The large mass (m1 = 60.0 kg) moves in 

a circular path of radius r1 = 0.140 m, while the 

radius of the path for the small mass (m2 = 0.120 kg) is 

 2 1

3.00 m 0.140 m 2.86 m

r r 

  
 

 The system has maximum angular speed 

when the rod is in the vertical position as 

shown at the right. 

 We take PEg = 0 at the level of the horizontal 
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rotation axis and use conservation of energy to find: 

      2 2
1 max 2 max 2 2 1 1

1 1
      0 0

2 2
f g i g

f i
KE PE KE PE I I m gr m gr 

 
          

 

Approximating the two objects as point masses, we have 2 2
1 1 1 2 2 2 and I m r I m r  . The energy conservation 

equation then becomes    1 2 2 2
1 1 2 2 max 1 1 2 22
m r m r m r m r g    and yields 

 
           

       

2

1 1 2 2
max 2 22 2

1 1 2 2

2 60.0 kg 0.140 m 0.120 kg 2.86 m 9.80 m s2

60.0 kg 0.140 m 0.120 kg 2.86 m

m r m r g

m r m r


   
 

 

 

or max 8.56 rad s  . The maximum linear speed of the small mass object is then 

      2 2 maxmax
2.86 m 8.56 rad s 24.5 m sr     

8.84 (a) Note that the cylinder has both translational and rotational  

 motion. The center of gravity accelerates downward while 

 the cylinder rotates around the center of gravity. Thus, we 

 apply both the translational and the rotational forms of  

 Newton’s second law to the cylinder: 

     yyF ma T mg m a       

  or 

   T m g a   [1] 

      I Tr I a r        

  For a uniform, solid cylinder, 2
1

2
I mr  so our last result becomes 

  
2

2

mr a
Tr

r

   
      

 or 
2T

a
m

  [2] 

  Substituting Equation [2] into Equation [1] gives T = mg – 2T, and solving for T yields T = mg/3. 

 (b) From Equation [2] above, 
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2 2

2 3
3

T mg
a g

m m

 
    

 

 (c) Considering the translational motion of the center of gravity, 2 2
0 2y y ya y     gives 

   
2

0 2 4 3
3

y

g
h gh

 
      

 

  Using conservation of energy with PEg at the final level of the cylinder gives 

     t r g t r g
f i

KE KE PE KE KE PE      or 1 12 2
2 2

0 0 0ym I mgh       

  Since 1 2
2

 and y r I mr    , this becomes 2 2
1 1 1

2 2 2
ym mr 

2

2

y

r

 
  

mgh
 

 
 

, or 
23

4
 ym mgh  

yielding 4 3y gh  . 

8.85 Considering the shoulder joint as the pivot, the second  

condition of equilibrium gives 

      0  70 cm sin 45 4.0 cm 0
2

m

w
F       

 or 

 
 

 
70 cm

12.4
2 4.0 cm sin 45

m

w
F w 


 

 Recall that this is the total force exerted on the arm by a set of two muscles. If we approximate that the two muscles 

of this pair exert equal magnitude forces, the force exerted by each muscle is 
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   3
12.4

6.2 6.2 750 N 4.6 10  N 4.6 kN
2 2

m
each
muscle

F w
F w        

8.86 Observe that since the torque opposing the rotational motion of the gymnast is constant, the work done by 

nonconservative forces as the gymnast goes from position 1 to position 2 (an angular displacement of  /2 rad) will 

be the same as that done while the gymnast goes from position 2 to position 3 (another angular displacement of  /2 

rad). 

 Choose PEg = 0 at the level of the bar, and let the distance from the bar to the center of gravity of the outstretched 

body be reg. Applying the work–energy theorem,    nc g g
f i

W KE PE KE PE    , to the rotation from 

position 1 to position 2 gives 

      1 2
2 cg212

0 0ncW I mgr     or   1 2
2 cg212ncW I mgr    [1] 

 Now, apply the work–energy theorem to the rotation from position 2 to position 3 to obtain 

      1 12 2
3 cg 22 223

0ncW I mg r I      
   or   1 12 2

3 2 cg2 223ncW I I mgr      [2] 

 Since the frictional torque is constant and these two segments of the motion involve equal angular displacements,

   
23 12nc ncW W . Thus, equating Equation [2] to Equation [1] gives 

 
1 12 2

3 2 cg2 2
I I mgr   1 2

2 cg2
I mgr   

 which yields 2 2
3 22  , or  3 22 2 4.0 rad s 5.7 rad s    . 

8.87 (a) Free-body diagrams for each block and the  

 pulley are given at the right. Observe that  

 the angular acceleration of the pulley will be  

 clockwise in direction and has been given a  

 negative sign. Since I   , the positive  

 sense for torques and angular acceleration  

 must be the same (counterclockwise). 

  For m1:  1 1 1 y yF ma T m g m a       
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   1 1T m g a   [1] 

  For m2: 

  2 2 x xF ma T m a     [2] 

  For the pulley:  2 1 I T r T r I a r        or 

  1 2 2

I
T T a

r

 
    

 [3] 

  Substitute Equations [1] and [2] into Equation [3] and solve for a to obtain 

  
 

1

2
1 2

m g
a

I r m m


 
 

  or 

  
   

   

2

2
22

4.00 kg 9.80 m s
3.12 m s

0.500 kg m 0.300 m 4.00 kg 3.00 kg
a  

  
 

 (b) Equation [1] above gives:    2 2
1 4.00 kg 9.80 m s 3.12 m s 26.7 NT    , 

  and Equation [2] yields:    2
2 3.00 kg 3.12 m s 9.37 NT   . 

8.88 (a)  

 (b) 0      120 N 0y F monkeyF n m g       

     2120 N 10.0 kg 9.80 m s 218 NFn     

 (c) When x = 2L/3, we consider the bottom end of the ladder as our pivot and obtain 

    0      120 Nbottom
end

L
     

2
cos 60.0 98.0 N

2

L 
  

 
Wcos 60.0

3
n L

 
  

 
 sin 60.0 0   

or 
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 

W

60.0 N 196 3  N cos 60.0
72.4 N

sin 60.0
n

   
 


 

  Then, 

  W0      0xF T n      or W 72.4 NT n   

 (d) When the rope is ready to break, W 80.0 NT n  . Then  0bottom
end

   yields 

         120 N cos 60.0 98.0 N cos 60.0 80.0 N sin 60.0 0
2

L
x L

 
        

 

  or 

  
   

 
 

80.0 N sin 60.0 60.0 N cos 60.0
0.802 0.802 3.00 m 2.41 m

98.0 N cos 60.0

L
x L

    
   


 

 (e) If the horizontal surface were rough and the rope removed, a horizontal static friction force directed toward 

the wall would act on the bottom end of the ladder. Otherwise, the analysis would be much as what is done 

above. The maximum distance the monkey could climb would correspond to the condition that the friction 

force have its maximum value, Fsn , so you would need to know the coefficient of static friction to solve 

part (d). 

 


