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PROBLEM SOLUTIONS 

7.1 (a) Earth rotates 2 radians (360°) on its axis in 1 day. Thus, 

    
2  rad

1 day

 



 
t

1 day
5

4
7.27 10  rad s

8.64 10  s


 

  
 

 

 (b) Because of its rotation about its axis, Earth bulges at the equator. 

7.2 The distance traveled is s = r θ, where θ is in radians. 

 For 30°, 

       
 rad

4.1 m 30 2.1 m
180




  
       

s r  

 For 30 radians, 

         24.1 m 30 rad 1.2 10  m   s r  

 For 30 revolutions, 

        22  rad
4.1 m 30 rev 7.7 10  m

1 rev




  
       

s r  

7.3 (a) 
860 000 mi 5280 ft

3.2 10  rad
1.0 ft 1 mi


 

     

s

r
 

 (b) 
8 71 rev

3.2 10  rad 5.0 10  rev
2  rad




 
     

 

7.4 (a) 
21.00 rev s 0 rev

3.33 10  
30.0 s


  
   
t 2

2  rad

s 1 rev

 
 
 

20.209 rad s
 

  
 

(b) Yes. When an object starts from rest, its angular speed is related to the angular acceleration and time by the 

equation  = (t). Thus, the angular speed is directly proportional to both the angular acceleration and the 

time interval. It the time interval is held constant, doubling the angular acceleration will double the angular 

speed attained during the interval. 
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7.5 (a) 
 4

2
2.51 10  rev min 0 2  rad 1 min

821 rad s
3.20 s 1 rev 60.0 s




     
       

 

 (b)  
22 3

2

1 1 rad
0 821 3.20 s 4.21 10  rad

2 2 s
  

 
       i t t  

7.6 
rev 2  rad 1 min

3 600 377 rad s
min 1 rev 60.0 s




   
       i  

 
2  rad

50.0 rev 314 rad
1 rev




 
    

 

 Thus, 

  
 
 

22

2
0 377 rad s

226 rad s
2 2 314 rad






 
   



iw
 

7.7 (a) From  2 2

0 2      , the angular displacement is 

    
   

 

2 22 2

0

2

2.2 rad s 0.06 rad s
3.5 rad

2 2 0.70 rad s

 





     

(b) From the equation given above for , observe that when the angular acceleration is constant, the 

displacement is proportional to the difference in the squares of the final and initial angular speeds. Thus, the 

angular displacement would increase by a factor of 4 if both of these speeds were doubled. 

7.8 (a) The maximum height h depends on the drop’s vertical speed at the instant it leaves the tire and becomes a 

projectile. The vertical speed at this instant is the same as the tangential speed, t = r, of points on the tire. 

Since the second drop rose to a lesser height, the tangential speed decreased during the intervening rotation 

of the tire. 

(b) From  2 2

0 2  yv v a y , with 0 = t ay = g, and  = 0 when y = h, the relation between the tangential 

speed of the tire and the maximum height h is found to be 

     20 2  tv g h   or  2tv gh  

  Thus, the angular speed of the tire when the first drop left was 
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  11

1

2tv gh

r r
    

  and when the second drop left, the angular speed was 

    
  22

2

2
  

tv gh

r r
 

  From  2 2

0 2      , with  = 2, the angular acceleration is found to be 

         
 

2 2 2 2
2 1 2 1

2 12

2 2

2 2

gh r gh r g
h h

r

 


  

 
   

  
 

  or 

    
 

   
 

2

2
2

9.80 m s
0.510 m 0.540 m 0.322 rad s

0.381 m 2  rad



     

7.9 Main Rotor: 

    
rev 2  rad 1 min

3.80 m 450 179 m s
min 1 rev 60 s

r



     

            
v  

   
sound

sound

m
 = 179 = 0.522

s 343 m s

  
      

v
v v  

 Tail Rotor: 

    
rev 2  rad 1 min

0.510 m 4 138 221 m s
min 1 rev 60 s

r



     

            
v  

   
sound

sound

m
 = 221 = 0.644

s 343 m s

  
      

v
v v  

7.10 We will break the motion into two stages: (1) an acceleration period and (2) a deceleration period. 

 The angular displacement during the acceleration period is 

   
   

 1 av

5.0 rev s 2  rad 1 rev 0
8.0 s 126 rad

2 2

f i
t t

  
 

    
     

    
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 and while decelerating, 

   
   

 2

0 5.0 rev s 2  rad 1 rev
12 s 188 rad

2 2

f i
t

  


    
    
    

 

 The total displacement is  1 2

1 rev
126 188  rad 50 rev .

2  rad
  



 
         

 

7.11 (a) The linear distance the car travels in coming to rest is given by  2 2
0 2f a x  v v  as 

    
 

 

22 2
0

2

0 29.0 m s
240 m

2 2 1.75 m s

f
x

a

 
   



v v
 

 Since the car does not skid, the linear displacement of the car and the angular displacement of the tires are 

related by x = r (). Thus, the angular displacement of the tires is 

     
240 m 1 rev

728 rad 116 rev
0.330 m 2  rad

x

r




  
      

 

 (b) When the car has traveled 120 m (one half of the total distance), the linear speed of the car is 

           
22 2

0 2 29.0 m s 2 1.75 m s 120 m 20.5 m sa x      v v  

  and the angular speed of the tires is 

    
20.5 m s

62.1 rad s
0.330 mr

   
v

 

7.12 (a) The angular speed is    2
0 0 2.50 rad s 2.30 s 5.75 rad s .t        

 (b) Since the disk has a diameter of 45.0 cm, its radius is r = (00.450 m)/2 = 0.225 m.  

  Thus, 

       0.225 m 5.75 rad s 1.29 m st r  v  

  and 

       2 20.225 m 2.50 rad s 0.563 m sta r    
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 (c) The angular displacement of the disk is 

    
 

 
 

22 2
0

0 2

5.75 rad s 0 360
6.61 rad 379

2 2  rad2 2.50 rad s

f

f

 
  

 

   
         

 

  and the final angular position of the radius line through point P is 

    0 57.3 379 436f          

  or it is at 76 counterclockwise from the + x-axis after turning 19° beyond one full revolution. 

7.13 From av
2

it t
 

 
 

     
, we find the initial angular speed to be 

  
 

2  rad
2 37.0 rev

2 1 rev
98.0 rad s 57.0 rad s

3.00 s
i

t




 

 
  

    
 

 The angular acceleration is then 

  2
98.0 rad s 57.0 rad s

13.7 rad s
3.00 s

i

t

 


 
    

7.14 (a) The initial angular speed is 

  2
0

rev
1.00 10    

min

2  rad

1 rev

 1 min 
  

10.5 rad s
60.0 s

 
 

 
 

  The time to stop (i.e., reach a speed of  = 0) with  = 2.00 rad/s2 is 

  
0

2

0 10.5 rad s
5.25 s

2.00 rad s
t

 



 
  


 

 (b)  0
av

0 10.5 rad s
5.25 s 27.6 rad

2 2
t t

 
 

   
         

 

7.15 The centripetal acceleration is 2 2
c ta r r v  where r radius of the circular path followed by the object in 

question. The angular speed of the rotating Earth is 

    
5

4

rad 1 day
2  7.27 10  rad s

day 8.64 10  s
   

    
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 (a) For a person on the equator, r = RE = 6.38  106 m, so 

       
2

2 6 5 2 26.38 10  m 7.27 10  rad s 3.37 10  m sca r         

 (b) For a person at the North Pole, 0         0 .cr a    

(c) The centripetal acceleration of an object is directed toward the center of the circular path the object is following. 

Thus, the forces involved in producing this acceleration are all forces acting on the object which have a component 

along the radius line of the circular path. These forces are the gravitational force and the normal force. 

7.16 The radius of the cylinder is 3
1609 m

2.5 mi 4.0 10  m
1 mi

r
 

    
. Thus, from ac = r

2, the required angular 

velocity is 

   
2

2
3

9.80 m s
4.9 10  rad s

4.0 10  m

ca

r
    


 

7.17 The final angular velocity is 

   
rev 1 min 2  rad

78 8.17 rad s
min 60 s 1 rev

f




   
       

 

 and the radius of the disk is 

   
2 .54 cm

5.0 in 12.7 cm 0.127 m
1 in

r
 

    
 

 (a) The tangential acceleration of the bug as the disk speeds up is 

      2
8.17 rad s

0.127 m 0.35 m s
3.0 s

ta r r
t




   
        

 

 (b) The final tangential speed of the bug is 

       0.127 m 8.17 rad s 1.0 m st fr  v  

 (c) At t = 1.0 s  
8.17 rad s

0 1.0 s 2.7 rad s
3.0 s

i t  
 

      
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  Thus, 20.35 m sta r    as above, while the radial acceleration is 

       
22 20.127 m 2.7 rad s 0.94 m sca r    

 The total acceleration is 2 2 21.0 m sc ta a a   , and the angle this acceleration makes with the 

direction of ca  is 

    1 1
0.35

tan tan 20
0.94

t

c

a

a
  

   
        

 

7.18 The normal force exerted by the wall behind the 

person’s back will supply the necessary centripetal 

acceleration, or 

 Figure P7.18 

   2
cn ma mr   

 where r = 29 ft is the radius of the circular path followed by the person. 

 If it is desired to have n = 20  weight = 20mg, then it is necessary that m 2 20r m  g , or 

   
 220 9.8 m s20

29 ft

g

r
  

  1 m 3.281 ft 
rad

4.7 
s

1 rev

2  rad

60 s 
  

45 rev min
1 min

 
 

 
 

7.19 The total force, directed toward the center of the 

circular path, acting on the rider at the top of the loop is 

the sum of the normal force and the gravitation force. If 

the magnitude of the normal force (exerted on the rider 

by the seat) is to have a magnitude equal to the rider’s 

weight, the total centripetal force is then 

   2c gF n F mg mg mg      

 Also, 
v2

topcF m r
 so we solve for the needed speed at the top of the loop as 
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m 2
top

2m
r


v

2
top          or          2g rgv  

 Ignoring any friction and using conservation of energy from when the coaster starts from rest (i = 0) at height h 

until it reaches the top of the loop gives 

   
1

2
m 2

i mv
1

2
gh m 2

top mv  2g r   or     
1

0 2 2
2

gh rg g r    

 and reduces to h = 3r = 3(4.00 m) = 12.0 m. 

7.20 (a) The natural tendency of the coin is to move in a straight line (tangent to the circular path of radius 15.0 cm), 

and hence, go farther from the center of the turntable. To prevent this, the force of static friction must act 

toward the center of the turntable and supply the needed centripetal force. When the necessary centripetal 

force exceeds the maximum value of the static friction force, max( )s s sf n mg   , the coin begins to 

slip. 

(b) When the turntable has angular speed,  the required centripetal force is Fc = mr
2. Thus, if the coin is not to 

slip, it is necessary that 2 ,smr mg   or 

     
   20.350 9.80 m s

4.78 rad s
0.150 m

sg

r


     

 With a constant angular acceleration of  = 0.730 rad/s2, the time required to reach the critical angular speed 

is 

    
0

2

4.78 rad s 0
6.55 s

0.730 rad s
t

 



 
    

7.21 (a) From Fr = mac, we have 

    
   

2
2

3
55.0 kg 4.00 m s

1.10 10  N 1.10 kN
0.800 m

tT m
r

 
     

 

v
 

 (b) The tension is larger than her weight by a factor of 
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   

3

2

1.10 10  N
2.04 times

55.0 kg 9.80 m s

T

mg


   

7.22 (a) The centripetal acceleration is 2
c ta r v . Thus, when ac = at = 0.500 m/s2, we have 

       2400 m 0.500 m s 200  m s 14.1 m st cr a   v  

 (b) At this time, 

     
2

200  m s 0
28.3 s

0.500 m s

t i

t

t
a

 
  
v v

 

  and the linear displacement is 

        
av

200  m s 0
28.3 s 200 m

2 2

t i
ts t t

   
        

v v
v  

 (c) The time is 28.3 st   as found in part (b) above. 

7.23 Friction between the tires and the roadway is capable of giving the truck a maximum centripetal acceleration of 

   
 

22
,max 2

,max

32.0 m s
6.83 m s

150 m

t
ca

r
  
v

 

 If the radius of the curve changes to 75.0 m, the maximum safe speed will be 

      2
,max ,max 75.0 m 6.83 m s 22.6 m st cr a  v  

7.24 Since 
2

2t
cF m m r

r
 

v
, the needed angular velocity is 

   
   

11

16

4.0 10  N
 = = 

3.0 10  kg 0.150 m

cF

mr










 

   2 2
1 rev

= 9.4 10  rad s = 1.5 10  rev s
2  rad

 
   

 

7.25 (a)    
22 22.00 m 3.00 rad s 18.0 m sca r    
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 (b)    250.0 kg 18.0 m s 900 Nc cF m a    

(c) We know the centripetal acceleration is produced by the force of friction. Therefore, the needed static friction force 

is fs = 900 N. Also, the normal force is n = mg = 490 N. Thus, the minimum coefficient of friction required is 

    
 

max 900 N
= 1.84

490 N

s

s

f

n
    

  So large a coefficient of friction is unreasonable, and she will not be able to stay on the merry-go-round. 

7.26 (a) The only force acting on the astronaut is the normal force 

 exerted on him by the “floor” of the cabin. 

 Figure P7.26 

 (b) 
2
t

c

m
F n

r
 

v
 

 
(c) If, 

1

2
En mg  then 

       2
1

60.0 kg 9.80 m s 294 N
2

n    

 (d) From the equation in Part (b), 

    
   294 N 10.0 m

7.00 m s
60.0 kg

t

nr

m
  v  

 (e) Since 1 = r, we have 

    
7.00 m s

0.700 rad s
10.0 m

t

r
   

v
 

 (f) The period of rotation is 

    
2 2

8.98 s
0.700 rad s

T
 


    
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(g) Upon standing, the astronaut’s head is moving slower than his feet because his head is closer to the axis of rotation. 

When standing, the radius of the circular path followed by the head is rhead = 10.0 m  1.80 m = 8.20 m, and the 

tangential speed of the head is 

         headhead
8.20 m 0.700 rad s 5.74 m st r   v  

7.27 (a) Since the 1.0-kg mass is in equilibrium, the tension in the string is 

       21.0 kg 9.8 m s 9.8 NT m g    

 (b) The tension in the string must produce the centripetal acceleration of the puck. Hence, Fc = T = 9.8 N. 

 (c) From 
2

puck
t

cF m
r

 
  

 

v
, we find 

   

puck

1.0 m 9.8 N
6.3 m s .

0.25 kg

c
t

r F

m
  v  

7.28 (a) Since the mass m2 hangs in equilibrium on the end of the string, 

    2 0yF T m g      or  2T m g  

 (b) The puck moves in a circular path of radius R and must have an acceleration directed toward the center equal 

to 2
c ta R v . The only force acting on the puck and directed toward the center is the tension in the string. 

Newton’s second law requires 

   toward 1
center

cF m a 
  giving 

2

1
tT m
R


v

 

 (c) Combing the results from (a) and (b) gives 

  
2

1 2
tm m g
R


v

    or  2

1
t

m gR

m
v  

 (d) Substitution of the numeric data from problem 7.27 into the results for (a) and (c) shown above will yield the  

  answers given for that problem. 

7.29 (a) The force of static friction acting toward the road’s center of curvature must supply the briefcase’s required 

centripetal acceleration. The condition that it be able to meet this need is that 

 2
maxc t s sF m r f mg  v , or s  

2
t /rg. When the tangential 
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2speed becomes large enough that s t rg  v  the briefcase will begin to slide. 

(b) As discussed above, the briefcase starts to slide when 2
s t rg  v . If this occurs at the speed, t = 15.0 m/s, 

the coefficient of static friction must be 

    
 

   

2

2

15.0 m s
0.370

62.0 m 9.80 m s
s    

7.30 (a) The external forces acting on the water are the gravitational force and the contact force exerted on the water 

by the pail. 

(b) The contact force exerted by the pail is the most important in causing the water to move in a circle. If the  

  gravitational force acted alone, the water would follow the parabolic path of a projectile. 

(c) When the pail is inverted at the top of the circular path, it cannot hold the water up to prevent it from falling 

out. If the water is not to spill, the pail must be moving fast enough that the required centripetal force is at 

least as large as the gravitational force. That is, we must have 

    
2

m mg
r


v

    or     21.00 m 9.80 m s 3.13 m srg  v  

(d) If the pail were to suddenly disappear when is it at the top of the circle and moving at 3.13 m/s, he water 

would follow the parabolic are of a projectile launched with initial velocity components of 

0 03.13 m s ,  0x y v v  

7.31 (a) The centripetal acceleration is 

     
2

2 2
rev 2  rad 1 min

9.00 m 4.00 1.58 m s
min 1 rev 60 s

ca r



      

              
 

 (b) At the bottom of the circular path, the normal force exerted by the seat must support the weight and also 

  produce the centripetal acceleration. Thus, 

          240.0 kg 9.80 1.58  m s 455 N  upwardcn m g a         

 (c) At the top of the path, the weight must offset the normal force of the seat plus supply the needed centripetal 

  acceleration. Therefore, mg = n+ mac, or 
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          240.0 kg 9.80 1.58  m s 329 N  upwardcn m g a         

(d) At a point halfway up, the seat exerts an upward vertical component equal to the child’s weight (392 N) and 

a component toward the center having magnitude    240.0 kg 1.58 m s 63.2 Nc cF ma   . The total 

force exerted by the seat is 

       
2 2

392 N 63.2 N 397 NRF     directed inward and at 

    1
392 N

tan 80.8  above the horizontal
63.2 N

   
    

 

7.32 (a) At A, the track supports the weight and supplies the centripetal acceleration. Thus, 

      
 

2
2

2
20.0 m s

500 kg 9.80 m s 25 kN
10 m

tn mg m
r

 
     
 
 

v
 

 (b) At B, the weight must offset the normal force exerted by the track and produce the needed centripetal 

 acceleration, or 2
tmg n m r  v . If the car is on the verge of leaving the track, then n = 0 and 

 2
tmg m r v . Hence, 

       215 m 9.80 m s 12 m st r g  v  

7.33 At the half-way point the spaceship is 1.92  108 from both bodies. The force exerted on the ship by the Earth is 

directed toward the Earth and has magnitude 

         

 

2

11 2 2 24 4

2
8

6.67 10  N m kg 5.98 10  kg 3.00 10  kg
325 N

1.92 10  m

E s
E

Gm m
F

r




   
 



 

 The force exerted on the ship by the Moon is directed toward the Moon and has a magnitude of 
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         

 

2

11 2 2 22 4

2
8

6.67 10  N m kg 7.36 10  kg 3.00 10  kg
4.00 N

1.92 10  m

M s
M

Gm m
F

r




   
 



 

  The resultant force is (325 N  4.00 N) = 321 N directed toward Earth. 

7.34 The radius of the satellite’s orbit is 

   6 6 66.38 10  m 2.00 10  m 8.38 10  mEr R h         

 (a) E
g

GM m
PE

r
   

  
   242

11 9
2 6

5.98 10  kg 100 kgN m
6.67 10  4.76 10  J

kg 8.38 10  m


 
        

 

 (b) 
   

 

242
11

22 2
6

5.98 10  kg 100 kgN m
6.67 10  568 N

kg 8.38 10  m

EGM m
F a

r


 
      

 

7.35 The forces exerted on the 2.0-kg mass by the other 

bodies are Fx and Fy shown in the diagram at the 

right. The magnitudes of these forces are 

 

     

 

11 2 2

2

11

6.67 10  N m kg 2.0 kg 4.0 kg

4.0 m

3.3 10  N

xF





 


 

 

 and 

 
     

 

11 2 2

10
2

6.67 10  N m kg 2.0 kg 3.0 kg
1.0 10  N

2.0 m
yF




 

    

 The resultant force exerted on the 2.0-kg mass is 2 2 101.1 10  Nx yF F F      directed at 

 1 1tan ( ) tan 3.0 72° above the axis .y xF F x        

7.36 (a) The density of the white dwarf would be 
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sun sun sun

3 3
Earth

3

4 3 4E E

M M MM

V V R R


 
     

  and using data from Table 7.3, 

    
 

 

30

9 3
3

6

3 1.991 10  kg
1.83 10  kg m

4 6.38 10  m





  


 

 (b) 2
gF mg GMm r  , so the acceleration of gravity on the surface of the white dwarf would be 

    
   

 

11 2 2 30
sun 6 2

22
6

6.67 10  N m kg 1.991 10  kg
3.26 10  m s

6.38 10  mE

GM
g

R

  
   


 

 (c) The general expression for the gravitational potential energy of an object of mass m at distance r from the 

 center of a spherical mass M is PE GMm r  . Thus, the potential energy of a 1.00-kg mass on the surface 

 of the white dwarf would be 

    

 

     

sun

11 2 2 30

13
6

1.00 kg

6.67 10  N m kg 1.991 10  kg 1.00 kg
2.08 10  J

6.38 10  m

E

GM
PE

R


 

  
    



 

7.37 (a) At the midpoint between the two masses, the forces exerted by the 200-kg and 500-kg masses are oppositely 

 directed, so from 
2

GMm
F

r
  and 1 2r r r  , we have 

      1 2
1 22 2 2

1 2

GMm GMm GM
F m m

r r r
      

  or 

     

     

 

11 2 2

2

5

6.67 10  N m kg 50.0 kg 500 kg 200 kg

0.200 m

2.50 10  N  toward the 500-kg mass

F





  
 

 

 

 (b) At a point between the two masses and distance d from the 500-kg mass, the net force will be zero when 
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   

 

   
2 2

50.0 kg 200 kg 50.0 kg 500 kg

0.400 m

G G

dd



  or  0.245 md   

 Note that the above equation yields a second solution d = 1.09 m. At that point, the two gravitational forces do have 

equal magnitudes, but are in the same direction and cannot add to zero. 

7.38 The equilibrium position lies between the Earth and the Sun on the line connecting their centers. At this point, the 

gravitational forces exerted on the object by the Earth and Sun have equal magnitudes and opposite directions. Let 

this point be located distance r from the center of the Earth. Then, its distance from the Sun is 

11(1.496 10  m )r  , and we may determine the value of r by requiring that 

     
 

22
111.496 10  m

SE G m mG m m

r r


 
 

 where mE and mS are the masses of the Earth and Sun respectively. This reduces to 

     
 111.496 10  m

577S

E

r m

r m

 
   

 or 1.496  1011 m = 578 r, which yields r = 2.59  108 m from center of the Earth . 

7.39 (a) When the rocket engine shuts off at an altitude of 250 km, we may consider the rocket to be beyond Earth’s 

atmosphere. Then, its mechanical energy will remain constant from that instant until it comes to rest 

momentarily at the maximum altitude. That is, KEf + PEf = KEi + PEi or 

    0 EGM m


max

1

2
m

r
 2 E

i

GM m
v

ir
   or  

2

max

1 1

2

i

E ir GM r
  

v
 

  With 6 3 6250 km 6.38 10  m 250 10  m 6.63 10  mi Er R         and 

 36.00 km s 6.00 10  m si   v , this gives 

  
 

   

2
3

7 1
611 2 2 24

max

6.00 10  m s1 1
1.06 10  m

6.63 10  m2 6.67 10  N m kg 5.98 10  kgr
 




    

  
 

  or rmax = 9.46  106 m The maximum altitude above Earth’s surface is then 

     6 6 6 3
max max 9.46 10  m 6.38 10  m 3.08 10  m 3.08 10  kmEh r R           
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(b) If the rocket were fired from a launch site on the equator, it would have a significant eastward component of 

velocity because of the Earth’s rotation about its axis. Hence, compared to being fired from the South Pole, 

the rocket’s initial speed would be greater, and the rocket would travel farther from Earth. 

7.40 We know that 1 2 5.00 kgm m  , or 2 15.00 kgm m   

   
 

 

2
1 11 2 8 11

22 2

5.00 kgN m
 1.00 10  N 6.67 10  

kg 0.200 m

m mG m m
F

r
 

 
      

 

    
   

28

2 2
1 1 11 2 2

1.00 10  N 0.200 m
5.00 kg 6.00 kg

6.67 10  N m kg
m m






  

 
 

 Thus,  2 2
1 15.00 kg 6.00 kg 0,m m    or    1 13.00 kg 2.00 kg 0m m    giving 

1 23.00 kg, so  2.00 kg .m m   

 The answer m1  2.00 kg and m2 = 3.00 kg is physically equivalent. 

7.41 (a) The gravitational force must supply the required centripetal acceleration, so 

     

2

2

tEGm m
m

r r

 
  

 

v
 

  This reduces to 

     2

E

t

G m
r 

v
 

  which gives 

     
 
 

242
11 7

22

5.98 10  kgN m
6.67 10  1.595 10  m

kg 5 000 m s
r 

 
     

 

  The altitude above the surface of the Earth is then 

     7 6 61.595 10  m 6.38 10  m 9.57 10  mEh r R         

 (b) The time required to complete one orbit is 
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 7

4
2 1.595 10  mcircumference of orbit

2.00 10  s 5.57 h
orbital speed 5 000 m s

T
 

      

7.42 For an object in orbit about Earth, Kepler’s third law gives the relation between the orbital period T and the average 

radius of the orbit (“semi-major axis”) as 

  
2

2 3
4

E

T r
GM

 
  
 

 

 Thus, if the average radius is 

  min max 5 8
6 670 km 385 000 km

1.96 10  km 1.96 10  m
2 2

r r
r

 
       

 the period (time for a round trip from Earth to the Moon) would be 

  
 

   

3
83

5

11 2 2 24

1.96 10  m
2 2 8.63 10  s

6.67 10  N m kg 5.98 10  kgE

r
T

GM
 




   

  
 

 The time for a one way trip from Earth to the Moon is then 

  
5

4

1 8.63 10  s 1 day
4.99 d

2 2 8.64 10  s
t T

  
     

 

7.43 The gravitational force exerted on Io by Jupiter provides the centripetal acceleration, so 

  
2

2

t G M m
m

r r

 
 

 

v
, or 

2
tr

M
G


v

 

 The orbital speed of Io is 

  
 

   

8

4
2 4.22 10  m2

1.73 10  m s
1.77 days 86 400 s day

t

r

T

 
   v  

 Thus, 

  
   

2
8 4

27
11 2 2

4.22 10  m 1.73 10  m s
1.90 10  kg

6.67 10  N m kg
M



 
  

 
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7.44 (a) The satellite moves in an orbit of radius r = 2RE and the gravitational force supplies the required centripetal 

 acceleration. Hence,    
22 2 2t E E Em R Gm m Rv , or 

   
 
 

242
11 3

2 6

5.98 10  kgN m
6.67 10  5.59 10  m s

2 kg 2 6.38 10  m

E
t

E

G m

R


 
       

v  

 (b) The period of the satellite’s motion is 

   
 6

4
3

2 2 6.38 10  m2
1.43 10  s 3.98 h

5.59 10  m st

r
T

  
 

    
v

 

 (c) The gravitational force acting on the satellite is F = G mE m/r2, or 

   
   

 

242
11 3

22
6

5.98 10  kg 600 kgN m
6.67 10  1.47 10  N

kg 2 6.38 10  m

F 
 

       
 

 

7.45 The radius of the satellite’s orbit is 

   6 3 66.38 10  m 200 10  m 6.58 10  mEr R h         

 (a) Since the gravitational force provides the centripetal acceleration, 

    

2

2

t EGm m
m

r r

 
 

 

v
 

  or 

   
 
 

242
11 3

2 6

5.98 10  kgN m
6.67 10  7.79 10  m s

kg 6.58 10  m

E
t

G m

r


 
       

v  

  Hence, the period of the orbital motion is 

   
 6

3
3

2 6.58 10  m2
5.31 10  s 1.48 h

7.79 10  m st

r
T

 
    

v
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 (b) The orbital speed is 37.79 10  m st  v  as computed above. 

 (c) Assuming the satellite is launched from a point on the equator of the Earth, its initial speed is the 

  rotational speed of the launch point, or 

    
 62 6.38 10  m2

464 m s
1 day 86 400 s

E
i

R  
  v  

 The work–kinetic energy theorem gives the energy input required to place the satellite in orbit as 

   nc g g
f i

W KE PE KE PE    , or 

    

2 2
2 2

1 1 1 1

2 2 2

t iE E
nc t i E

E E

GM m GM m
W m m m GM

r R R r

     
                   

v v
v v  

 Substitution of appropriate numeric values into this result gives the minimum energy input as 

96.43 10  J .ncW    

7.46 A synchronous satellite will have an orbital period equal to Jupiter’s rotation period, so the satellite can have the 

red spot in sight at all times. Thus, the desired orbital period is 

   4
3 600 s

9.84 h 3.54 10  s
1 h

T
 

    
 

 Kepler’s third law gives the period of a satellite in orbit around Jupiter as 

   

2
2 3

Jupiter

4
T r

GM


  

 The required radius of the circular orbit is therefore 

 
     

1 3
21 3

11 2 2 27 42
Jupiter 8

2 2

6.67 10  N m kg 1.90 10  kg 3.54 10  s
1.59 10 m 

4 4

GM T
r

 

      
        
 

 

 and the altitude of the satellite above Jupiter’s surface should be 

   8 7 7
Jupiter 1.59 10  m 6.99 10  m 8.91 10  mh r R         
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7.47 The gravitational force on mass located at distance r from the center of the Earth is 2
g EF mg GM m r  . Thus, 

the acceleration of gravity at this location is 2
Eg GM r . If g = 9.00 m/s2 at the location of the satellite, the 

radius of its orbit must be 

   
   11 2 2 24

6
2

6.67 10  N m kg 5.98 10  kg
6.66 10  m

9.00 m s

EGM
r

g

  
     

 From Kepler’s third law for Earth satellites, 2 2 34 ET r GM S , the period is found to be 

   
 

   

3
63

3

11 2 2 24

6.66 10  m
2 2 5.41 10  s

6.67 10  N m kg 5.98 10  kgE

r
T

GM
 




   

  
 

 or 

    3
1 h

5.41 10  s 1.50 h 90.0 min
3 600 s

T
 

     
 

7.48 The gravitational force on a small parcel of material at the star’s equator supplies the centripetal 

 acceleration, or 

    
2

2
2

s t
s

s s

G M m
m m R

R R


 
  

 

v
 

 Hence, 3
s sG M R   

  
   

 

11 2 2 30

4
3

3

6.67 10  N m kg 2 1.99 10  kg
1.63 10  rad s

10.0 10  m

    
 

  


 

7.49 (a) 
 

0.447 m s
98.0 mi h

1 mi h rad 1 rev
59.0 9.40 rev s

0.742 m s 2  rad

t

r




 
    

     

v  

 (b) 
 

 

2
2 2

2
9.40 rev s 0

44.2 rev s
2 2 1 rev

i 





  


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   
2

2
3 2

0.447 m s
98.0 mi h

1 mi h
2.59 10  m s

0.742 m

t
ca

r

  
    

   
v  

    2
2

rev 2  rad
0.742 m 44.2 206 m s

s 1 rev
ta r




  
      

 

 (c) In the radial direction at the release point, the hand supports the weight of the ball and also supplies the cen

 tripetal acceleration. Thus,   ,r r rF mg ma m g a     or 

       2 3 20.198 kg 9.80 m s 2.59 10  m s 514 NrF      

  In the tangential direction, the hand supplies only the tangential acceleration, so 

       2
0.198 kg 206 m s 40.8 Nt tF ma    

7.50 (a) 2

1.30 m s
56.5 rad s

2.30 10  m

t
i

ir



  



v
 

 (b) 2

1.30 m s
22.4 rad s

5.80 10  m

t
f

fr



  



v
 

 (c) The duration of the recording is 

       74 min 60 s min 33 s 4 473 st     

  Thus, 

    
 

3 2
av

22.4 56.5  rad s
7.62 10  rad s

4 473 s

f i

t

 
 

 
    


 

 (d) 
   

 

2 22 2

5

3 2

22.4 rad s 56.5 rad s
1.77 10  rad

2 2 7.62 10  rad s

f i 


 

 
    

 
 

 (e) The track moves past the lens at a constant speed of t = 1.30 m/s for 4 473 seconds. Therefore, the length of 
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 the spiral track is 

          31.30 m s 4 473 s 5.81 10  m 5.81 kmts t      v  

7.51 The angular velocity of the ball is 0.500 rev s  rad s.    

 (a)    0.800 m  rad s 2.51 m st r   v  

 (b)    
2

22 20.800 m  rad s 7.90 m st
ca r

r
    

v
 

 (c) We imagine that the weight of the ball is supported by a frictionless platform. Then, the rope tension need 

 only produce the centripetal acceleration. The force required to produce the needed centripetal acceleration is 

  2
tF m r v . Thus, if the maximum force the rope can exert is 100 N, the maximum tangential speed of 

 the ball is 

     
   max

max

0.800 m 100 N
4.00 m s

5.00 kg
t

r F

m
  v  

7.52 (a) When the car is about to slip down the incline,  

 the friction force, f , is directed up the incline as  

 shown and has the magnitude f n . Thus, 

    cos sin 0yF n n mg        

  or 

    
cos sin

mg
n

  



 [1] 

  Also, 2
minsin cos ( ),xF n n m R      v  or 

     min sin cos
n R

m
   v  [2] 
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  Substituting equation [1] into [2] gives 

    min

sin cos tan

cos sin 1 tan
R g R g

    

    

    
        

v  

  If the car is about to slip up the incline, f = n is directed down the slope (opposite to what is shown in the 

sketch). Then, cos sin 0yF n n mg       , or 

     
cos sin

mg
n

  



 [3] 

  Also,  2
maxsin cosxF n n m R      v  

  or 

     max sin cos
n R

m
   v  [4] 

  Combining equations [3] and [4] gives 

    max

sin cos tan

cos sin 1 tan
R g R g

    

    

    
        

v  

 (b) If R = 100 m,  = 10, and  = 0.10, the lower and upper limits of safe speeds are 

       2
min

tan10 0.10
100 9.8 8.6 m s

1 0.10 tan10
m m s

 
    

v  

  and 

       2
max

tan 10 0.10
100 m 9.8 m s 17 m s

1 0.10 tan 10

 
    

v  

7.53 The radius of the satellite’s orbit is 
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     6 2 66.38 10  m 1.50 10  mi 1 609 m 1 mi 6.62 10  mEr R h         

 (a) The required centripetal acceleration is produced by the gravitational force, so 

    
2

2

t EG M m
m

r r

 
 

 

v
, 

  which gives 

    E
t

G M

r
v  

    
 242

11 3
2 6

5.98 10  kgN m
6.67 10  7.76 10  m s

kg 6.62 10  m
t


 

      
v  

 (b) The time for one complete revolution is 

    
 6

3
3

2 6.62 10  m2
5.36 10  s 89.3 min

7.76 10  m st

r
T

 
    

v
 

7.54 (a) At the lowest point on the path, the net upward force (i.e., the force directed toward the center of the path and 

supplying the centripetal acceleration) is  2
up tF T mg m r    v , so the tension in the cable is 

    
 

2
2

2
3.00 m s

0.400 kg 9.80 m s 8.42 N
0.800 m

tT m g
r

  
           

v
 

 (b) Using conservation of mechanical energy,    g g
f i

KE PE KE PE   , as the bob goes from the lowest 

 to the highest point on the path gives 

     2
max

1
0 1 cos 0

2
img L m      v , or  

2

maxcos 1
2

i

g L
  

v
 

  
 

   

2
2

1 1
max 2

3.00 m s
cos 1 cos 1 64.8

2 2 9.80 m s 0.800 m

i

g L
  

  
            

v
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 (c) At the highest point on the path, the bob is at rest and the net radial force is 

   
2

maxcos 0t
rF T mg m

r


 
     

 

v
 

  Therefore, 

        2
maxcos 0.400 kg 9.80 m s cos 64.8° 1.67 NT mg     

7.55 (a) When the car is at the top of the arc, the normal force is upward and the weight downward. The net force 

directed downward, toward the center of the circular path and hence supplying the centripetal acceleration, is 

 2
down tF mg n m r    v . 

  Thus, the normal force is  2 .tn m g r  v  

 (b) If 30.0 m  and   0r n  , then 
2

0tg
r

 
v

 or the speed of the car must be 

       230.0 m 9.80 m s 17.1 m st r g  v  

7.56 The escape speed from the surface of a planet of radius R and mass M is given by 

  
2

e

G M

R
v  

 If the planet has uniform density, ρ, the mass is given by 

     3 34 3 4 3M volume R R        

 The expression for the escape speed then becomes 

   
32 4 8

3 3
e

G R G
R constant R

R

     
       

v  

 or the escape speed is directly proportional to the radius of the planet. 



Chapter 7 

Page 7.27 

7.57 The speed the person has due to the rotation of the Earth is t = r  where r is the distance from the rotation axis 

and ω is the angular velocity of rotation. 

 The person’s apparent weight, (Fg)apparent , equals the magnitude of the upward normal force exerted on him by the 

scales. The true weight, (Fg)true = mg, is directed downward. The net downward force produces the needed 

centripetal acceleration, or 

       
2

2
down

true apparent true

t
g g gF n F F F m mr

r


 
         

 

v
 

 (a) At the equator, Er R , so      2

true apparent apparent
.g g E gF F m R F    

 (b) At the equator, it is given that 2 20.0340 m sr  , so the apparent weight is 

          2 2

apparent true
75.0 kg 9.80 0.0340  m s 732 Ng gF F mr          

  At either pole, r = 0 (the person is on the rotation axis) and 

          2

apparent true
75.0 kg 9.80 m s 735 Ng gF F mg     

7.58 Choosing y = 0 and PEg = 0 at the level of point B, applying the work–energy theorem to the block’s motion gives 

1 12 2
02 2

(2 )ncW m mgy m mg R   v v , or 

     2 2
0

2
2 2ncW
g R y

m
   v v  [1] 

 (a) At point A, y = R and Wnc = 0 (no nonconservative force has done work on the block yet). Thus, 

 2 2
0 2A gR v v . The normal force exerted on the block by the track must supply the centripetal 

 acceleration at point A, so 

   

22
0 2A

An m m g
R R

  
       

vv
 

     
 

 
2

2
4.0 m s

0.50 kg 2 9.8 m s 15 N
1.5 m

 
   

  
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  At point B, y = 0 and Wnc is still zero. Thus, 2 2
0 4B gR v v . Here, the normal force must supply the 

 centripetal acceleration and support the weight of the block. Therefore, 

   
22
0 5B

Bn m mg m g
R R

  
        

vv
 

     
 

 
2

2
4.0 m s

0.50 kg 5 9.8 m s 30 N
1.5 m

 
   

  

 

 (b) When the block reaches point C, y = 2R and  nc k kW f L mg L    . At this point, the normal force is 

 to be zero, so the weight alone must supply the centripetal acceleration. Thus,  2
cm R mgv , or the 

required speed at point C is 2
c R gv . Substituting  this into equation [1] yields 2

0 2 0kR g gL  v , or 

   
     

   

2 22
0

2

4.0 m s 1.5 m 9.8 m s
0.17

2 2 9.8 m s 0.40 m
k

R g

gL



  
v

 

7.59 Define the following symbols: Mm = mass of moon, Me = mass of the Earth, Rm =  radius of moon, Re = radius of 

the Earth, and r = radius of the Moon’s orbit around the Earth. 

 We interpret “lunar escape speed” to be the escape speed from the surface of a stationary moon alone in the 

universe. Then, 

  launch escape

2
2 2 m

m

G M

R
 v v  or 

2
launch

8 m

m

G M

R
v  

 Applying conservation of mechanical energy from launch to impact gives 

     2 2
impact launch

1 1

2 2
g g
f i

m PE m PE  v v , or 

     2
impact launch

2
g g
i f

PE PE
m

 
  

  
v v  

 The needed potential energies are 

    m e
g
i

m

G M m G M m
PE

R r
    and   e m

g
f

e

G M m G M m
PE

R r
    
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 Using these potential energies and the expression for 2
launchv  from above, the equation for the impact speed reduces 

to 

  
 

impact

3
2

e mm e

m e

M MM M
G

R R r

 
   

 
v  

 With numeric values of 11 2 26.67 10  N m kgG    , 227.36 10  kgsmM   , and 61.74 10  mmR   , 

66.38 10  meR   , 83.84 10  msr   we find 

  4
impact 1.18 10  m s 11.8 km s  v  

7.60 (a) When the passenger is at the top, the radial forces producing the 

centripetal acceleration  are the upward force of the seat and the 

downward force of gravity. The downward force  must exceed the upward 

force to yield a net force toward the center of the circular path. 

 (b) At the lowest point on the path, the radial forces contributing to the centripetal 

acceleration  are again the upward force of the seat and the 

downward force of gravity. However, the  upward force must now exceed the downward 

force to yield a net force directed toward  the center of the circular path. 

 (c) The seat must exert the greatest force on the passenger at the lowest point on  

 the circular path. 

 (d) At the top of the loop, 
2

r gF m F n
r

   
v

 

  or 

   
 

2
2 2

2
4.00 m s

70.0 kg 9.80 m s 546 N
8.00 m

gn F m m g
r r

  
             

v v
 

  At the bottom of the loop, 
2( )r gF m r n F   v  

  or 
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   
 

2
2 2

2
4.00 m s

70.0 kg 9.80 m s 826 N
8.00 m

gn F m m g
r r

  
             

v v
 

7.61  (a) In order to launch yourself into orbit by running, your running speed must be such that the gravitational force 

 acting on you exactly equals the force needed to produce the centripetal acceleration. That is, 

 2 2
tGMm r m r v , where M is the mass of the asteroid and r is its radius. Since 

 3[(4 3) ]M density volume r    , this requirement becomes 

   3
4

3

m
G r 

 
   2

m

r


2
t

r

v
   or   

23

4

tr
G 


v

. 

  The radius of the asteroid would then be 

   
 

   

2

4

11 2 2 3 3

3 8.50 m s
1.53 10  m

4 6.673 10  N m kg 1.10 10  kg m
r

 
  

  
 

  or 15.3 km .r   

 (b) The mass of the asteroid is given by 

      
3

3 3 3 4 16
4 4

1.10 10  kg m 1.53 10  m 1.66 10  kg
3 3

M r  
 

       
 

 (c) Your period will be 

   
 4

4
1.53 10  m2 2

1.13 10  s
8.50 m st

r
T

 



 
    

v
 

7.62 (a)  
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 (b) The velocity vector at A is shorter than that at B. The gravitational force acting on the spacecraft is a conser

 vative force, so the total mechanical energy of the craft is constant. The gravitational potential energy at A is 

 larger than at B. Hence, the kinetic energy (and therefore the velocity) at A must be less than at B. 

 (c) The acceleration vector at A is shorter than that at B. From Newton’s second law, the acceleration of the 

 spacecraft is directly proportional to the force acting on it. Since the gravitational force at A is weaker than 

 that at B, the acceleration at A must be less than the acceleration at B. 

7.63 Choosing  PEs = 0 at the top of the hill, the speed of the  

skier after dropping distance h is found using conservation  

of mechanical energy as 

  2
1

0 0
2

tm m g h  v , or 2 2t g hv  

 The net force directed toward the center of the circular  

path, and providing the centripetal acceleration, is 

  
2

cos t
rF m g n m

R


 
     

 

v
 

 Solving for the normal force, after making the substitutions 2 2t g hv  and cos 1
R h h

R R



    

 gives 
2 3

1 1
h g h h

n m g m m g
R R R

     
              

 

 The skier leaves the hill when n  0 This occurs when 

  
3

1 0
h

R
   or 

3

R
h   

7.64 The centripetal acceleration of a particle at distance r from the axis is 2 2
c ta r r v  If we are to have ac = 

100g, then it is necessary that 

  2
100

100      or     
g

r g
r

    

 The required rotation rate increases as r decreases. In order to maintain the required acceleration for all particles in 

the casting, we use the minimum value of r and find 
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 2

3
2

min

100 9.80 m s100 rad 1 rev 60.0 s rev
216 2.06 10  

2.10 10  m s 2  rad 1 min min

g

r




   
          

 

7.65 The sketch at the right shows the car as it passes the highest point  

on the bump. Taking upward as positive, we have 

  
2

  y yF ma n mg m
r

 
       

v
 

 or 

  
2

n m g
r

 
   

v
 

 (a) If 8.94 m sv , the normal force exerted by the road is 

    
 

2

4
2

8.94 m sm
1 800 kg 9.80 1.06 10  N 10.6 kN

s 20.4 m
n

 
     
 
 

 

 (b) When the car is on the verge of losing contact with the road, n = 0. This gives g = 
2/r and the speed must be 

      220.4 m 9.80 m s 14.1 m srg  v  

7.66 When the rope makes angle θ with the vertical, the net  

force directed toward the center of the circular path is  

cosrF T m g     as shown in the sketch. This force  

supplies the needed centripetal acceleration, so 

 
2

cos tT m g m
r


 

   
 

v
, or 

2

cos tT m g
r


 

  
 

v
 

 Using conservation of mechanical energy, with KE = 0 at  

 = 90 and PEg = 0 at the bottom of the arc, the speed when 

the rope is at angle θ from the vertical is given by  1 2
2

cos 0tm m g r r m g r   v , or 

2 2 cost g r v . The expression for the tension in the rope at angle θ then reduces to 3 cosT m g  . 

 (a) At the beginning of the motion,  = 90 and T = 0 
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 (b) At 1.5 m from the bottom of the arc, 
2 .5 m 2 .5 m

cos 0.63
4.0 mr

     and the tension is 

        2 33 70 kg 9.8 m s 0.63 1.3 10  N 1.3 kNT      

 (c) At the bottom of the arc,  = 0 and cos = 1.0, so the tension is 

        2 33 70 kg 9.8 m s 1.0 2.1 10  N 2.1 kNT      

7.67 (a) The desired path is an elliptical trajectory  

 with the Sun at one of the foci, the departure 

 planet at the perihelion, and the target planet 

 at the aphelion. The perihelion distance rD is  

  the radius of the departure planet’s orbit, while the 

 aphelion distance rr is the radius of the target planet’s 

 orbit. The semi-major axis of the desired trajectory is 

 then   2D Ta r r  . 

   If Earth is the departure planet, 111.496 10  m 1.00 AUDr    . 

   With Mars as the target planet, 

    11
11

1 AU
2.28 10  m 1.52 AU

1.496 10  m
Tr

 
    

 

   Thus, the semi-major axis of the minimum energy trajectory is 

   
1.00 AU 1.52 AU

1.26 AU
2 2

D Tr r
a

 
    

   Kepler’s third law, T2 = a3, then gives the time for a full trip around this path as 

    
33 1.26 AU 1.41 yrT a    

  so the time for a one-way trip from Earth to Mars is 

   
1 1.41 yr

0.71 yr
2 2

t T     
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 (b) This trip cannot be taken at just any time. The departure must be timed so that the spacecraft arrives at the 

 aphelion when the target planet is located there. 

7.68 (a) Consider the sketch at the right. At the bottom of the  

loop, the net force toward the center (i.e., the centripetal  

force) is 

   
2

c g

m
F n F

R
  

v
 

  so the pilot’s apparent weight (normal force) is 

    
  22 2

1
g

g g g

F gm
n F F F

R R gR

 
       

vv v
 

  or 

    
 

 
   

2
2

2 3 2

3

2.00 10  m s
712 N 1

9.80 m s 3.20 10  m s

1.62 10  N

n

 
  
 
 

 

 

 
(b) At the top of the loop, the centripetal force is 

2
c gF m R n F  v , so the apparent weight is 

    

 

 
 

   

22 2

2
2

2 3 2

1

2.00 10  m s
712 N 1 196 N

9.80 m s 3.20 10  m s

g

g g g

F gm
n F F F

R R gR

 
       

 
   
 
 

vv v

 

 (c) With the right speed, the needed centripetal force at the top of the loop can be made exactly equal to the 

 gravitational force. At this speed, the normal force exerted on the pilot by the seat (his apparent weight) will 

 be zero, and the pilot will have the sensation of weightlessness. 

 (d) When n = 0 at the top of the loop, 
2

c gF m R mg F  v , and the speed will be 

      3 23.20 10  m 9.80 m s 177 m s
mg

Rg
m R

    v  
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7.69 (a) At the instant the mud leaves the tire and becomes a projectile, its velocity components are 

 0 00,  x y t R  v v v . From 2
0 2y yy t a t  v with ya g  , the time required for the mud to 

 return to its starting point (with y = 0) is given by 

   0
2

gt
t R
 

   
 

  for which the nonzero solution is 

   
2R

t
g


  

 (b) The angular displacement of the wheel (turning at constant angular speed  ) in time t is  = t. If the 

 displacement is 1 rev 2  rad     at 2t R g , then 

   
2

2  rad
R

g


 

 
   

  or  2
g

R


    and  

g

R


   

7.70 (a) At each point on the vertical circular path, two forces are acting on the ball: 

  (1) The downward gravitational force with constant magnitude gF mg  

  (2) The tension force in the string, always directed toward the center of the path 

(b) The sketch at the right shows the forces acting on the ball  

when it is at the bottom of the circular path and when it is  

at the highest point on the path. Note that the gravitational  

force has the same magnitude and direction at each point  

on the circular path. The tension force varies in magnitude  

at different points and is always directed toward the center  

of the path. 

 (c) At the top of the circle, 
2

c gF m r T F  v , or 

   

 
 

2 2 2

2

2
5.20 m s

0.275 kg 9.80 m s 6.05 N
0.850 m

g

m m
T F mg m g

r r r

 
       

 
   
 
 

v v v
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 (d) At the bottom of the circle, 2
c gF m r T F T mg    v , and solving for the speed gives 

   2
r T
T mg r g

m m

 
     

v    and  
T

r g
m

 
   

v  

  If the string is at the breaking point at the bottom of the circle, then T = 22.5 N, and the speed of the object at  

 this point must be 

     2
22.5 N

0.850 m 9.80 m s 7.82 m s
0.275 kg

 
    

v  

7.71 From Figure (a) at the right, observe that the  

angle the strings make with the vertical is 

  1
1.50 m

cos 41.4
2.00 m

   
    

 

 Also, the radius of the circular path is 

     
2 2

2.00 m 1.50 m 1.32 mr     

 Figure (b) gives a free-body diagram of the object with the +y-axis vertical and the +x-axis directed toward the 

center of the circular path. 

 (a) Since the object has zero vertical acceleration, Newton’s second law gives 

  1 2cos cos 0yF T T mg         or  1 2
cos

mg
T T


   [1] 

  In the horizontal direction, the object has the centripetal acceleration 2
ca r v  directed in the +x-direction 

 (toward the center of the circular path). Thus, 

  
2

1 2sin sinx

m
F T T

r
    

v
   or  

2

1 2
sin

m
T T

r 
 

v
 [2] 

  Adding equations [1] and [2] gives 
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2

12
cos sin

g
T m

r 

 
   

v
 

  so the tension in the upper string is 

    
   

 

2
22

1

6.00 m s4.00 kg 9.80 m s
109 N

2 cos 41.4 1.32 m sin 41.4
T

 
   
  
 

 

 (b) To compute the tension T2 in the lower string, subtract equation [1] above from equation [2] to obtain 

   
2

22
sin cos

g
T m

r  

 
   

v
 

  Thus, 

    
   

 

2
2 2

2

6.00 m s4.00 kg 9.80 m s
56.4 N

2 1.32 m sin 41.4 cos 41.4
T

 
   
  
 

 

7.72 The maximum lift force is   2
maxLF C v , where 2 20.018 N s mC    and  is the flying speed. For the bat to 

stay aloft, the vertical component of the lift force must equal the weight, or cosLF mg   where  is the banking 

angle. The horizontal component of this force supplies the centripetal acceleration needed to make a turn, or 

2sin ( )LF m r  v  where r is the radius of the turn. 

 (a) To stay aloft while flying at minimum speed, the bat must have 0   (to give  
max

cos cos 1   ) and 

 also use the maximum lift force possible at that speed. That is, we need 

      
maxmax

cosLF mg  ,  or   2
min 1C mgv  

  Thus, we see that minimum flying speed is 

    
   2

min 2 2

0.031 kg 9.8 m s
4.1 m s

0.018 N s m

mg

C
  


v  

 (b) To maintain horizontal flight while banking at the maximum possible angle, we must have 

   maxmax
cosLF mg  , or 2

maxcosC mg v . For 10 m sv , this yields 
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   

   

2

max 22 2 2

0.031 kg 9.8 m s
cos 0.17

0.018 N s m 10 m s

mg

C
   

v
   or   max 80    

 (c) The horizontal component of the lift force supplies the centripetal acceleration in a turn, 

 2sinLF m r  v .Thus, the minimum radius turn possible is given by 

      

2 2

min

maxmax
sinL

m m
r

F 
 

v v

2C v maxmax
sinsin

m

C 
  

  where we have recognized that sin  has its maximum value at the largest allowable value of . For a flying 

 speed of  = 10 m/s, the maximum allowable bank angle is max = 80as found in part (b). The minimum 

 radius turn possible at this flying speed is then 

    min 2 2

0.031 kg
1.7 m

0.018 N s m sin 80.0
r  

 
 

 (d) No. Flying slower actually increases the minimum radius of the achievable turns. 

  As found in part (c), min maxsinr m C  . To see how this depends on the flying speed, recall that the 

 vertical component of the lift force must equal the weight or cosLF mg  . At the maximum allowable 

 bank angle, cos  will be a minimum. This occurs when   2
maxL LF F C  v . Thus, 2

maxcos mg C  v  

 and 

   

2

2
max max 2

sin 1 cos 1
mg

C
 

 
      v

 

  This gives the minimum radius turn possible at flying speed v as 

   
min

2

2
1

m
r

mg
C

C



 
   v

 

  Decreasing the flying speed v will decrease the denominator of this expression, yielding a larger value for the 

 minimum radius of achievable turns. 
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7.73 The angular speed of the luggage is  = 2 /T where  

T is the time for one complete rotation of the carousel. 

The resultant force acting on the luggage must be  

directed toward the center of the horizontal circular  

path (that is, in the +x direction). The magnitude of  

this resultant force must be 

  
2

2t
cma m mr

r


 
  

 

v
 

 Thus, 

    cos sinx x s cF ma f n ma       [1] 

 and 

    sin cos 0y y sF ma f n mg        

 or 

  
sin

cos

smg f
n






  [2] 

 Substituting equation [2] into equation [1] gives 

    
2sin

cos tan
cos

s s cf mg f ma


 


 
    

 

 or 

  
2

tan

cos sin cos

c
s

ma mg
f



  





 [3] 

 (a) With T = 38.0 s and r = 7.46 m, we find that 

    0.165 rad s   and      
22 30.0 kg 7.46 m 0.165 rad s 6.09 Ncma mr    

  Equation [3] then gives the friction force as 
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   2

2

6.09 N 30.0 kg 9.80 m s tan 20.0 113 N
107 N

sin 20.0 1.06
cos 20.0

cos 20.0

sf
 

  





 

 (b) If T = 34.0 s and r = 7.46 m, then  = 0.185 rad/s and 

        
22 230.0 kg 7.94 m s 0.185 rad s 8.15 Ncma mr    

  From equation [1], 

   

   2

2

8.15 N 30.0 kg 9.80 m s tan 20.0 115 N
108 N

sin 20.0 1.06
cos 20.0

cos 20.0

sf
 

  





 

  while equation [2] yields 

   
     230.0 kg 9.80 m s 108 N sin 20.0

273 N
cos 20.0

n
 

 


 

 Since the luggage is on the verge of slipping,  
maxs s sf f n   and the coefficient of static friction must be 

   
108 N

0.396
273 N

s
s

f

n
     

7.74 The horizontal component of the tension in the cord is the only  

force directed toward the center of the circular path, so it must  

supply the centripetal acceleration. Thus, 

   

2 2

sin
sin

t tT m m
r L




   
    

   

v v
 

 or 

    
2

2sin tm
T

L
 

v
  [1] 

 Also, the vertical component of the tension must support the weight of the ball, or 

    cosT m g   [2] 
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 (a) Dividing equation [1] by [2] gives 

    
22sin

cos

t

L g






v
 

  or 

    sin
cos

t

L g
v 


   [3] 

  With L = 1.5 m/s and  = 30, 

    
   21.5 m 9.8 m s

sin 30 2.1 m s
cos 30

t   


v  

 (b) From equation [3], with 2 2sin 1 cos   , we find 

  
221 cos

cos

t

L g








v
  or 

2
2cos cos 1 0t

L g
 

 
   
 

v
 

  Solving this quadratic equation for cos  gives 

   

2
2 2

cos 1
2 2

t t

L g L g


   
      

   

v v
 

  If L = 1.5 m and t = 4.0 m/s, this yields solutions: cos 1.7    (which is impossible), 

  and cos  = +1.7 (which is possible). 

  Thus,  = cos-1 (0.59) = 54. 

 (c) From equation [2], when T = 9.8 N and the cord is about to break, the angle is 

   
   2

1 1
0.50 kg 9.8 m s

cos cos 60
9.8 N

m g

T
  

  
          

 

  Then equation [3] gives 

   
   21.5 m 9.8 m s

sin sin 60 4.7 m s
cos cos 60

t

L g



   


v  
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7.75 The normal force exerted on the person by the cylindrical wall must provide the centripetal 

 acceleration, so n = m (r 
2). 

 If the minimum acceptable coefficient of friction is present, the person is on the verge of slipping and the maximum 

static friction force equals the person’s weight, or    
max min

.s sf n mg   

 Thus, 

    
   

2

22min

9.80 m s
0.131

3.00 m 5.00 rad s
s

mg g

n r



     

7.76 If the block will just make it through the top of the loop, the force required to produce the centripetal acceleration at 

point C must equal the block’s weight, or . 2( )cm R mgv  

 This gives ,c R gv  as the required speed of the block at point C. 

 We apply the work–energy theorem in the form 

    Wnc = ( KE + PE g PEs)f  – ( KE + PE g PEs.)i
 

 from when the block is first released until it reaches point C to obtain 

       2 2
1 1

cos180 2 0 0 0
2 2

k cf AB m mg R kd     v  

 The friction force is fk = uk (mg), and for minimum initial compression of the spring, 2
c Rgv  

as found above. Thus, the work–energy equation reduces to 

         
min

2 2 2 2 5k kmg AB mRg mg R mg AB R
d

k k

   
   

    
         2

min

0.50 kg 9.8 m s 2 0.30 2.5 m 5 1.5 m
0.75 m

78.4 N m
d

  
   

 


