
Chapter 6 

Page 6.1 

PROBLEM SOLUTIONS   

6.1 Use p = m 

 (a) p = (1.67 × 10–27 kg)(5.00 × 106 m/s) = 8.35 × 10–21 kg m/s 

 (b) p = (1.50 × 10–2 kg)(3.00 × 102 m/s) = 4.50 kg m/s 

 (c) p = (75.0 kg)(10.0 m/s) = 750 kg m/s 

 (d) p = (5.98 – 1024 kg)(2.98 × 104 m/s) = 1.78 × 1029 kg m/s 

6.2 From the impulse–momentum theorem, 

  av f iF t p m m    v v  

 Thus, 

 
 
 

   3 2

av

55 10  kg 2.0 10 ft s 0 1 m s
1.7 kN

0.0020 s 0 3.281 ft s

f im
F

t

     
      

v v
 

6.3 (a) If ball bulletp p , then 

  
   3 3

bullet bullet
ball

ball

3.00 10  kg 1.50 10  m s
31.0 m s

0.145 kg

m

m

 
  

v
v  

 (b) The kinetic energy of the bullet is 

     
2

3 3

2 3
bullet bullet bullet

3.00 10  kg 1.50 10  m s1
3.38 10  J

2 2
KE m

 
   v  

  while that of the baseball is 

     
2

2
ball ball ball

0.145 kg 31.0 m s1
69.7 J

2 2
KE m  v  

  The bullet has the larger kinetic energy by a factor of 48.4. 
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6.4 (a) Since the ball was thrown straight upward, it is at rest momentarily ( = 0) at its maximum 

  height. Therefore, p = 0. 

 (b) The maximum height is found from 2 2
0 2 ( )y y ya y  v v  with y = 0. 

  2
0 max0 2 ( ) ( )y g y   v . Thus, 

   
2
0

max 2

y
y

g
 

v
 

  We need the velocity at 2
max 0( ) 2 4yy y g    v ; thus 2 2

0 2 ( )y y ya y  v v  gives 

   
2 2
0 02 2

0 2
4 2

y y

y y g
g

 
    

 

v v
v v , or 

0 15 m s

2 2

y

y  
v

v  

  Therefore, 

  
   0.10 kg 15 m s

1.1 kg m s
2

yp m   v  upward 

6.5 (a)    av 84.0 kg 0 6.70 m s 563 kg m sf iI F t p m         v v  

 (b) av

563 kg m s
751 N

0.750 s

I
F

t


  


 

6.6 
 

2
2 2 2 2

2 2 2 2

mm m p
KE

m m m
   

vv v
 

6.7 From problem 6.6, KE = p2/2m, and hence,  2p m KE . Thus, 

 
 

 

2
2 25.0 kg m s

1.14 kg
2 2 275 J

p
m

KE
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 and 

 
     2 2 2 275 J

22.0 m s
1.14 kg

m KE KEp

m m m
    v  

6.8 (a) The impulse delivered by a force is equal to the area under 

the force versus time curve. From the figure at the right, 

this is seen to be a triangular area having a base of  

1.50 ms = of 1.50 × 10–3 s and altitude of 18 000 N. Thus, 

  
   3

1
1.50 10  s 18 000 N 13.5 N s

2
I    

 

 (b) 3
av 3

13.5 N s
9.00 10  N 9.00 kN

1.50 10  s

I
F

t 


    

 
 

6.9 (a) We choose the positive direction to be the direction of the final velocity of the ball. 

       0.280 kg 22.0 m s 15.0 m sf iI p m          v v  

  or 

  10.4 kg m s 10.4 kg m s  in the direction of the final velocityI       

 (b) The average force the player exerts on the ball is 

  av

10.4 kg m s
173 N

0.060 0 s

I
F

t


  


 

  By Newton’s third law, the ball exerts a force of equal magnitude back on the player’s fist. 

6.10 (a) av

I
F

t



, where I is the impulse the man must deliver to the child: child 0fI m v v . 

  
 child 0

3
av

12.0 kg 0 120 mi h 0.447 m s
6.4 10  N

0.10 s 1 mi h

fm
F

t

   
      

v v
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  or 

   3 3
av

0.224 8 lb
6.4 10  N 1.4 10  lb

1 N
F

 
     

 

 (b) It is unlikely that the man has sufficient arm strength to guarantee the safety of the child during a collision. 

 The violent forces during the collision would tear the child from his arms. 

 (c) The laws are soundly based on physical principles: always wear a seat belt when in a car. 

6.11 The velocity of the ball just before impact is found from 
2 2

0 2y y ya y  v v  as 

    2 2
1 0 2 0 2 9.80 m s 1.25 m 4.95 m sy ya y          v v  

 and the rebound velocity with which it leaves the floor is 

    2 2
2 2 0 2 9.80 m s 0.960 m 4.34 m sf ya y          v v  

 The impulse given the ball by the floor is then 

 

   

   

2 1

0.150 kg 4.34 m s 4.95 m s 1.39 N s 1.39 N s upward

t m m     

          

I F v v v

 

6.12 Take the direction of the ball’s final velocity (toward the net) to be the +x-direction. 

 (a)      0.0600 kg 40.0 m s 50.0 m sf iI p m         v v , giving 

  5.40 kg m sI     5.40 N s  toward the net  

(b)  

     

2 2

2 2

1

2

0.0600 kg 40.0 m s 50.0 m s
27.0 J

2

f iWork KE m   

 
  

  

v v  

6.13    avI F t p m     v  
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 Thus,    70.0 kg 5.20 m s 0 364 kg m sI m     v , and 

2
av

364 kg m s
438 kg m s

0.832 s

I
F

t


   


 

or 

  av 438 N directed forwardF  

6.14 Choose toward the east as the positive direction. 

 (a) The impulse delivered to the ball as it is caught is 

     0 0.500 kg 15.0 m s 7.50 kg m sf im m         I p v v  

  or 

  7.50 kg m s  westward I  

 (b) The average force exerted by the ball on the receiver is the negative of the average force exerted by the 

 receiver on the ball, or 

     av avreceiver ball

7.50 kg m s
375 N

0.0200 st

  
         

I
F F  

   av receiver
375 N eastwardF  

6.15 (a) The impulse equals the area under the F versus t graph. This area is the sum of the area of the rectangle plus 

the area of the triangle. Thus, 

         
1

2.0 N 3.0 s 2.0 N 2.0 s 8.0 N s
2

I      

 (b)    av f iI F t p m     v v  

   8.0 N s 1.5 kg 0,   giving  5.3 m sf f   v v  
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 (c) av ( ) ( ),  so   f i f i

I
I F t p m

m
       v v v v  

  
8.0 N s

2.0 m s 3.3 m s
1.5 kg

f


   v  

6.16 (a) Impulse = area under curve = (two triangular areas of altitude 4.00 N and base 2.00 s) + (one rectangular area 

of width 1.00 s and height of 4.00 N.) Thus, 

  
   

   
4.00 N 2.00 s

2 4.00 N 1.00 s 12.0 N s
2

I
 

    
  

 

 (b)    av ,  so  f i f i

I
I F t p m

m
       v v v v  

  
12.0 N s

 0 6.00 m s
2.00 kg

f


  v  

 (c) 
12.0 N s

2.00 m s 4.00 m s
2.00 kg

f i

I

m


     v v  

6.17 (a) The impulse is the area under the curve between 0 and 3.0 s. This is 

  (4.0 N)(3.0 s) 12 N sI     

 (b) The area under the curve between 0 and 5.0 s is 

  (4.0 N)(3.0 s) ( 2.0 N)(2.0 s) 8.0 N sI       

 (c)    av ,  so  f i f i

I
I F t p m

m
       v v v v  

  At 3.0 s: 
12 N s

0 8.0 m s
1.50 kg

f i

I

m


    v v  
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  At 5.0 s: 
8.0 N s

0 5.3 m s
1.50 kg

f i

I

m


    v v  

6.18 av t






p
F  so  av

x

x

p
F

t





  av

y

y

p
F

t





 

 
     

av

cos 60.0º cos 60.0º
0

y y
f i

y

m
m

F
t t

 


   
  

 

v v
v v  

 
       

av

sin 60.0º sin 60.0ºx xf i

x

m m
F

t t

   
         

 
 

 

 

   2 3.00 kg 10.0 m s sin 60.02 sin 60.0

0.200 s

260 N

m

t

  
 



 

v

 

 av
260 N in the negative -direction or perpendicular to the wallxF  

6.19 (a) 
   

2

av

2 2 1.20 m
9.60 10  s

0 25.0 m sf i

xx
t 


     

 v v v
 

 (b) 
     

5
av 2

1 400 kg 25.0 m s
3.65 10  N

9.60 10  s

mp
F

t t 


    

  

v
 

 (c)  2 2
av 2 2

25.0 m s 1 
260 m s 260 m s 26.6 

9.60 10  s 9.80 m s

g
a g

t 

 
        

v
 

6.20 Choose the positive direction to be from the pitcher toward home plate. 

 (a)          av 0.15 kg 22 m s 20 m sf it m           I F p v v  

   av 6.3 kg m s or 6.3 kg m s  toward the pitchert     I F  

 (b) 3
av 3

6.3 kg m s  
3.2 10  N  

2 .0 10  st 

 
    

 

I
F  

  or 



Chapter 6 

Page 6.8 

  3
av 3.2 10  N toward the pitcher F  

6.21 Requiring that total momentum be conserved gives 

     club club ball ball club club ball ballf i
m m m m       

 or 

           ball200 g 40 m s 46 g 200 g 55 m s 0  v  

 and 

  ball 65 m sv  

6.22 (a) The mass of the rifle is 

  
2

30 N 30
 kg

9.80 m s 9.8

w
m

g

 
     

 

  We choose the direction of the bullet’s motion to be negative. Then, conservation of momentum gives 

     rifle rifle bullet bullet rifle rifle bullet bulletf i
m m m m  v v v v  

 or 

       3
rifle30 9.8  kg 5.0 10  kg 300 m s 0 0        v  

 and 

  
   3

rifle

9.8 5.0 10  kg 300 m s
0.49 m s

30 kg


 v  

 (b) The mass of the man plus rifle is 

  
2

730 N
74.5 kg

9.80 m s
m    

  We use the same approach as in (a), to find 
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3

2
5.0 10  kg

300 m s 2.0 10  m s
74.5 kg




 
    

v  

6.23 The velocity of the girl relative to the ice, GI, is GI = GP + PI where GP = velocity of girl relative to plank, and 

PI = velocity of plank relative to ice. Since we are given that GP = 1.50 m/s, this becomes 

  GI PI1.50 m s v v   [1] 

 (a) Conservation of momentum gives 

  G GI P PI 0m m v v  or 
G

PI GI
P

m

m

 
   

 
v v  [2] 

  Then, Equation [1] becomes 

  
G

GI GI
P

1.50 m s
m

m

 
   

 
v v  or 

G
GI

P

1 1.50 m s
m

m

 
  

 
v  

  giving 

  
GI

1.50 m s
1.15 m s

45.0 kg
1

150 kg

 
 

   

v
 

 (b) Then, using [2] above, 

   PI

45.0 kg
1.15 m s 0.346 m s

150 kg

 
     

v  

or PI 0.346 m s  directed opposite to the girl’s motionv . 

6.24 We shall choose southward as the positive direction. 

 The mass of the man is 

  
2

730 N
74.5 kg

9.80 m s

w
m

g
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 Then, from conservation of momentum, 

 we find 

     man man book book man man book bookf i
m m m m  v v v v  

 or 

       man74.5 kg 1.2 kg 5.0 m s 0 0      and 2
man 8.1 10  m s v  

 Therefore, the time required to travel the 5.0 m to shore is 

 2

5.0 m
62 s

8.1 10 m/sman

x
t

 


  


 

6.25 (a) Using subscript a for the astronaut and t for the tank, conservation of momentum gives maaf + mttf = maai 

+ mtti. Since both astronaut and tank were initially at rest, this becomes 

  0 0a af t tfm m  v v  or 
t

af tf
a

m

m

 
   

 
v v  

 The mass of the astronaut alone (after the oxygen tank has been discarded) is ma = 75.0 kg. 

Taking toward the spacecraft as the positive direction, the velocity imparted to the astronaut is 

   
12.0 kg

8.00 m s 1.28 m s
75.0 kg

af

 
      

v  

  and the distance she will move in 2.00 min is 

     1.28 m s 120 s 154 mafd t  v  

 (b) By Newton’s third law, when the astronaut exerts a force on the tank, the tank exerts a force back on the 

 astronaut. This reaction force accelerates the astronaut towards the spacecraft. 

6.26 (a) Using subscript c for the (flatcar + cannon) and p for the projectile, conservation of momentum in the 

horizontal direction gives        c cf p pf c ci p pixx x x
m m m m  v v v v . Assuming that the flatcar, 

cannon, and projectile were initially at rest, 0ci pi v v , giving the initial recoil speed of the (flatcar + 

cannon) as 
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       3
1.00 ton

1.00 10  m s cos 30.0º 24.1 m s
36.0 ton

p

cf pf
x x

c

m

m

 
     

v v  

 (b) The flatcar, cannon, and Earth undergo a change in momentum in the y-direction that is equal an opposite the 

 vertical component of momentum imparted to the projectile. Because of the great mass of Earth, however, the 

 effect goes unnoticed. 

6.27 Consider the thrower first, with velocity after the throw of vthrower. Applying conservation of momentum yields 

          thrower65.0 kg 0.045 0 kg 30.0 m s 65.0 kg 0.045 0 kg 2.50 m s  v  

or thrower 2.48 m sv  

 Now, consider the (catcher + ball), with velocity of vcatcher after the catch. From momentum conservation, 

          catcher60.0 kg 0.045 0 kg 0.045 0 kg 30.0 m s 60.0 kg 0  v  

or 

2
catcher 2.25 10  m s v  

6.28 (a) B exerts a horizontal force on A. 

 (b) A exerts a force on B that is opposite in direction to the force B exerts on A. 

 (c) The force on A is equal in magnitude to the force on B, but is oppositely directed. 

 (d) Yes. The momentum of the system (the two skaters) is conserved because the net external force on the 

 system is zero (neglecting friction). 

 (e)          
system

0    0 0 0x x x A A B BA B
p p p m m          v v  

BB
A B

A

mm

m

 
    

 
v v

0.900 Bm
 2.00 m s 2.22 m s

 
  

 
 

A 2.22 m s  in the direction opposite to 
B

v v  
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6.29 (a)  

 (b) The collision is best described as perfectly inelastic, because the skaters remain in contact after the collision. 

 (c)  1 1 2 2 1 2 fm m m m  v v v   (d) 
1 1 2 2

1 2

f

m m

m m






v v
v  

 (e) 
       70.0 kg 8.00 m s 50.0 kg 4.00 m s

6.33 m s
70.0 kg 50.0 kg

f


 


v  

6.30 Consider a system consisting of arrow and target from the instant just before impact until the instant after the arrow 

emerges from the target. No external horizontal forces act on the system, so total horizontal momentum must be 

conserved, or 

    a a t t a a t tf i
m m m m  v v v v  

 Thus, 

 

 
     

       22.5 g 35.0 m s 300 g 2.50 m s 0
1.67 m s

22.5 g

a a t t t ti i f

a f
a

m m m

m

 


   
 

v v v
v

 

6.31 When Gayle jumps on the sled, conservation of momentum gives 

      250.0 kg 5.00 kg 50.0 kg 4.00 m s 0  v  

 or the speed of Gayle and the sled as they start down the hill is 2 = 3.64 m/s. 

 After Gayle and the sled glide down 5.00 m, conservation of mechanical energy (taking y = 0 at the level of the top 

of the hill) gives 

            
22 2

3

1 1
55.0 kg 55.0 kg 9.80  m s 5.00 m 55.0 kg 3.64 m s 0

2 2
   v  

 so Gayle’s speed just before the brother hops on is 3 = 10.5 m/s. 

 After her Brother jumps on, conservation of momentum yields 
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      455.0 kg 30.0 kg 55.0 kg 10.50 m s 0  v  

 and the speed of Gayle, brother, and sled just after brother hops on is 4 = 6.82 m/s. 

 After all slide an additional 10.0 m down (to a level 15.0 m below the level of the hilltop), conservation of 

mechanical energy from just after brother hops on to the end gives the final speed as 

 

 
1

85.0 kg
2

 2
5 85.0 kgv    

 

29.80  m s 15.0 m

1
                                85.0 kg

2



    
2

6.82 m s 85.0 kg    29.80  m s 5.00 m

 

or 5 15.6 m sv  

6.32 For each skater, the impulse–momentum theorem gives 

 
   

3
av

75.0 kg 5.00 m s
3.75 10  N

0.100 s

p m
F

t t

 
    

 

v
 

 Since Fav < 4500 N, there are no broken bones. 

6.33 (a) If M is the mass of a single car, conservation of momentum gives 

         3 3.00 m s 2 1.20 m sfM M M v , or 1.80 m sf v  

 (b) The kinetic energy lost is KElost = KEi – KEf, or 

           
2 2 2

lost

1 1 1
3.00 m s 2 1.20 m s 3 1.80 m s

2 2 2
KE M M M    

With M = 2.00104 kg, this yields 4
lost 2.16 10  JKE    

6.34 (a)  From conservation of momentum, 

     1 23 2fM M M v v v  

or 



Chapter 6 

Page 6.14 

  1 2

1
2

3
f  v v v  

 (b) The kinetic energy before is 

     2 2 2 2
1 2 1 2

1 1
2 2

2 2 2
i

M
KE M M   v v v v  

  After collision: 

   
 

 
2

1 22 2 2
1 1 2 2

21 3
3 4 4

2 2 9 6
f f

M M
KE M

 
     
 
 

v v
v v v v v  

  or 

  2 2
1 1 2 2

2 2

6 3 3
f

M M M
KE   v v v v  

  The kinetic energy lost is 

  2 2
1 2 1 2

1 1 2 2
1

2 6 3 3
i fKE KE M M M

   
           

v v v v  

  or 

     
22 2

1 2 1 2 1 22
3 3

i f

M M
KE KE     v v v v v v  

6.35 (a) Because momentum is conserved even in a perfectly inelastic collision such as this, the 

  ratio is .pf /pi = 1. 

 (b)    1 2 1 1 2          0f i f ip p m m m m    v v  or 
1 1

1 2

i
f

m

m m




v
v  

 2 2
1 1 2 1 1

1 1 1
0

2 2 2
i i iKE m m m  v v  and   2

1 2

1

2
f fKE m m  v  
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so 
   2

1 2 1 2

2 2
1 1 1 1

f f

i i i

KE m m m m

KE m m

 
 

v

v v

2 2
1 1im v

 
1

2
1 21 2

m

m mm m



 

6.36 Let us apply conservation of energy to the block from the time just after the bullet has passed through until it 

reaches maximum height in order to find its speed V just after the collision. 

 22
1 1

2 2
i i f fm mgy m mgy  v v  becomes 2

1
0 0

2
fmV mgy    

or 

   22 2 9.80 m s 0.120 m 1.53 m sfV g y    

 Now use conservation of momentum from before until just after the collision in order to find the initial speed of the 

bullet, . 

          3 37.0 10  kg 0 1.5 kg 1.53 m s 7.0 10  kg 200 m s     v  

from which 25.3 10  m s v  
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6.37  The leftmost part 

of the sketch depicts 

the situation from 

when the actor 

starts from rest 

until just before he 

makes contact with 

his costar. Using 

conservation of 

energy over this 

period gives 

    
1 i

KE PE KE PE  
 

or 

2
1 1

1
0 0

2
m mgR  v

 

 so his speed just before impact is 

    2
1 2 2 9.80 m s 3.75 m 8.57 m sgR  v  

 Now, employing conservation of momentum from just before to just after impact gives 

    1 2 0 1 1 2 0m m m m  v v  or 
   1 1

0
1 2

80.0 kg 8.57 m s
5.08 m s

80.0 kg 55.0 kg

m

m m
  

 

v
v  

 Finally, using conservation of energy from just after impact to the end yields 

    
0f

KE PE KE PE    or  1 20 m m   1 2

1

2
gh m m  2

0v  

 and 

 

 

2
2
0

2

5.08 m s
1.32 m

2 2 9.80 m s
h

g
  

v
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6.38  

 

 Consider the sketches above which show the situation just before and just after collision. 

 Conserving momentum in y-direction:   yf yip p m  1 sin 37.0ºf mv 2 sin 53.0º 0f v , or 

 2 1 1

sin 37.0
0.754

sin 53.0
f f f

 
   

v v v  

 Now, conserving momentum in the x-direction: 

   xf xip p m  1 cos 37.0f m v 2 cos 53.0f m v 1 0i v  

 or 

  1 1 1cos 37.0º 0.754 cos 53.0ºf f i v v v  

 and 

 
   

1
1

5.00 m s
3.99 m s

cos 37.0º 0.754 cos 53.0º cos 37.0º 0.754 cos 53.0º

i
f   

 

v
v  

 Then, 

  2 10.754 0.754 3.99 m s 3.01 m sf f  v v  

 Now, we can verify that this collision was indeed an elastic collision: 

    22 2 2
1

1
5.00 m s 12.5 m s

2 2
i i

m
KE m m  v  
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 and 

      2 22 2 2 2
1 2

1 1
3.99 m s 3.01 m s 12.5 m s

2 2 2 2
f f f

m m
KE m m m    v v  

 so KEf = KEi, which is the criteria for an elastic collision. 

6.39 Let M = mass of ball, m = mass of bullet, v = velocity of bullet, and V = the initial velocity of the ball-bullet 

combination. Then, using conservation of momentum from just before to just after collision gives 

   0   or   
m

M m V m V
M m

 
      

v v  

 Now, we use conservation of mechanical energy from just after the collision until the ball reaches maximum height 

to find 

    
22

2 2
max max

1 1
0 0  or  

2 2 2

V m
M m g h M m V h

g g M m

 
         

v  

 With the data values provided, this becomes 

 
 

 
2

2

max 2

1 0.030 kg
200 m s 57 m

0.15 kg 0.030 kg2 9.80 m s
h

 
   

 

6.40 First, we will find the horizontal speed, 0x, of the block and embedded bullet just after impact. After this instant, 

the block-bullet combination is a projectile, and we find the time to reach the floor by use of 1 2
0 2y yy t a t  v , 

which becomes 

  2 2
1

1.00 m 0 9.80 m s
2

t    , giving t = 0.452 s 

 Thus, 

 0

2.00 m
4.43 m s

0.452 s
x

x

t


  v  

 Now use conservation of momentum for the collision, with b = speed of incoming bullet: 
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      3 38.00 10  kg 0 258 10  kg 4.43 m sb
    v , so 

143 m sb v  (about 320 mph) 

6.41 First, we use conservation of mechanical energy to find the speed of the block and embedded bullet just after 

impact: 

       2 2
1 1

 becomes 0 0
2 2

s sf i
KE PE KE PE m M V kx        

and yields 

   
 

2
2 150 N m 0.800 m

29.3 m s
0.0120 0.100  kg

kx
V

m M
  

 
 

 Now, employ conservation of momentum to find the speed of the bullet just before impact: m + M (0) = (m + M) 

V, or 

  
0.112 kg

29.3 m s 273 m s
0.0120 kg

m M
V

m

  
        

v  

6.42 (a) Conservation of momentum gives T fT c fc T iT c icm m m m  v v v v , or 

  

 

       9 000 kg 20.0 m s 1 200 kg 25.0 18.0  m s

9 000 kg

T iT c ic fc

fT
T

m m

m

 


   


v v v
v

 

20.9 m s   EastfT v  

 (b) 

   

           

2 22 2
lost

2 22 2

2 2 2 2

1 1 1 1

2 2 2 2

1

2

1
1 200 kg 625 324 m s 9 000 kg 400 438.2 m s

2

i f c ic T iT c fc T fT

c ic fc T iT fT

KE KE KE m m m m

m m

   
        

   

    
 

    
 

v v v v

v v v v
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3
lost 8.68 10  J, which becomes internal energyKE    

 Note: If 20.9 m/s were used to determine the energy lost instead of 20.9333 as the answer to Part (a), the answer 

would be very different. We have kept extra digits in all intermediate answers until the problem is complete. 

6.43 (a) From conservation of momentum, 

         1 25.00 g 10.0 g 5.00 g 20.0 cm s 0f f  v v  

or 

1 22 20.0 cm sf f v v  [1] 

  Also for an elastic, head-on, collision, we have  1 2 1 2i f f i   v v v v , 

  which becomes 20.0 cm/s– 0 = –1f + 2f, or  

  2f = 1f + 20.0 cm/s  [2] 

  Substituting equation [2] into [1] yields  1 12 20.0 cm s 20.0 cm sf f  v v , or 

  31f = –20.0 cm/s and 1f = –6.67 cm/s 

  Then [2] gives 

  2 6.67 cm s 20.0 cm s 13.3 cm sf    v  

 (b)    
23 4

1 2

1
5.00 10  kg 0.200 m s 0 1.00 10  J

2
i i iKE KE KE          

   
2

2 3 2 5
2 2 2

1 1
10.0 10  kg 13.3 10  m s 8.84 10  J

2 2
f fKE m        v , so 

5
2

4

8.84 10  J
0.884

1.00 10  J

f

i

KE

KE






 


 

6.44 (a)  
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 (b) x-direction: 1 1 2 2 3 3      cos 0º cos105º cos 0xf xip p m m m       v v v  

  y-direction:  1 1 2 2 3 3      sin 0º sin105º sin 0yf yip p m m m       v v v  

 (c)      1 1 1 cos 0º 48.0 kg 12.0 m s 1 576 kg m sxp m   v  

       2 2 2 cos105º 62.0 kg 15.0 m s 0.259 241 kg m sxp m     v  

 (d)      1 1 1 sin 0º 48.0 kg 12.0 m s 0 0yp m  v  

       2 2 2 sin105º 62.0 kg 15.0 m s 0.966 898 kg m syp m    v  

 (e) x-direction:   3576 kg m s 241 kg m s 112 kg cos 0    v  

  y-direction:   30 898 kg m s 112 kg sin 0   v  

 (f) x-direction: 3

576 kg m s 241 kg m s
cos

112 kg


   
v   or  3 cos 2.99 m s  v  

  y-direction: 3

898 kg m s
sin

112 kg


 
v   or  3 sin 8.02 m s  v  

  Then, squaring and adding these results, recognizing that 2 2cos sin 1   , gives 

       
2 22 2 2

3 cos sin 2.99 m s 8.02 m s     v  and 2 2
3 73.3 m s 8.56 m s v  

 (g) 
3v

3

sin

v

8.02 m s
tan 2.68

2.99 m scos





  


 so  1tan 2.68 180º 250º     

 Note that the factor of 180° was included in the last calculation because it was recognized that both the sine 

and cosine of angle  were negative. This meant that  had to be a third quadrant angle. Use of the inverse 

tangent function alone yields only the principle angles (–90   +90) that have the given value for the 
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tangent function. 

 (h) Because the third fragment must have a momentum equal in magnitude and opposite direction to the resultant 

of the other two fragments momenta, 

 all three pieces must travel in the same plane. 

6.45 Conservation of momentum gives 

            1 225.0 g 10.0 g 25.0 g 20.0 cm s 10.0 g 15.0 cm sf f  v v  

 or 

 1 22.50 65.0 cm sf f v v   [1] 

 For head-on, elastic collisions, we know that  1 2 1 2i i f f   v v v v . 

 Thus,  

 1 220.0 cm s 15.0 cm s +f f  v v  or 2 1 5.00 cm sf f v v  [2] 

 Substituting equation [2] into [1] yields 3.501f = 60.0 cm/s, or 1f = 17.1 cm/s. 

 Equation [2] then gives 2f = 17.1 cm/s + 5.00 cm/s = 22.1 cm/s. 

6.46 First, consider conservation of momentum and write 

 1 1 2 2 1 1 2 2i i f fm m m m  v v v v  

 Since m1 = m2, this becomes 

 1 2 1 2i i f f  v v v v  [1] 

 For an elastic head-on collision, we also have  1 2 1 2i i f f   v v v v , which may be written as 

 1 2 1 2i i f f   v v v v  [2] 

 Adding Equations [1] and [2] yields 

  v2f = v1i [3] 
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 Subtracting Equation [2] from [1] gives 

  v1f = v2i [4] 

 Equations [3] and [4] show us that, under the conditions of equal mass objects striking one another in a head-on, 

elastic collision, the two objects simply exchange velocities. Thus, we may write the results of the various collisions 

as 

 (a) 1 0f v , 2 1.50 m sf v  

 (b) 1 1.00 m sf  v , 2 1.50 m sf v  

 (c) 1 1.00 m sf v , 2 1.50 m sf v  

6.47 (a) Over a the short time interval of the collision, external forces have no time to impart significant impulse to 

 the players. The two players move together after the tackle , so the collision is completely inelastic. 

  

 (b)  1 2 1 1     cos 0xf xi f ip p m m m     v v  

or 

 
   1 1

1 2

90.0 kg 5.00 m s
cos

90.0 kg 95.0 kg

i
f

m

m m
  



v
v  and  cos 2.43 m sf  v  

 1 2 2 2     sin 0yf yi f ip p m m m     v v  

giving 
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   2 2

1 2

95.0 kg 3.00 m s
sin

90.0 kg 95.0 kg

i
f

m

m m
  



v
v  and sin 1.54 m sf  v  

Therefore, 

     
2 22 22 2sin cos 1.54 m s 2.43 m sf f    v v  

and 

2 28.28 m s 2.88 m sf  v  

Also, 

tan
f

 
v sin

f



v
 1

1.54 m s
0.633      and      tan 0.633 32.3

2.43 m scos



      

Thus, 

2.88 m s  at 32.3° north of eastf v  

 (c)   22 2
lost 1 1 2 2 1 2

1 1 1

2 2 2
i f i i fKE KE KE m m m m     v v v  

             
2 2 21 1

90.0 kg 5.00 m s 95.0 kg 3.00 m s 185 kg 2.88 m s 785 J
2 2
    
  

 

  The lost kinetic energy is transformed into other forms of energy, such as thermal energy and sound. 

6.48 Consider conservation of momentum in the first event (twin A tossing the pack), taking the direction of the velocity 

given the backpack as positive. This yields 

    A A pack pack A pack 0 0fm m m m   v v  

or 

 pack pack

A
A

12.0 kg
3.00 m s 0.655 m s  

55.0 kg
f

m

m

  
       

v
v  and A 0.655 m s  f v  
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 Conservation of momentum when twin B catches and holds onto the backpack yields 

    pack B B pack pack0B fm m m m  v v  

or 

   pack pack

B
B pack

12.0 kg 3.00 m s
0.537 m s  

55.0 kg 12.0 kg
f

m

m m


  

 

v
v  

6.49 Choose the +x-axis to be eastward and the +y-axis northward. 

 If vi is the initial northward speed of the 3 000-kg car, conservation of momentum in the y direction gives 

      0 3 000 kg 3 000 kg 2 000 kg 5.22 m s sin 40.0ºi
     v  

or 

5.59 m si v  

 Observe that knowledge of the initial speed of the 2 000-kg car was unnecessary for this solution. 

6.50 We use conservation of momentum for both northward and eastward components. 

 For the eastward direction:  13.0 m s 2 cos 55.0fM M V  . 

 For the northward direction: 2 2 sin 55.0i fM MV v . 

 Divide the northward equation by the eastward equation to find 

 
M 2i

M

v

 

2

13.0 m s

MV


sin 55.0

2

f

fMV



cos 55.0
 or  2 13.0 m s tan 55.0i  v  

yieiding 

 2

2.237 mi h
13.0 m s tan 55.0º 41.5 mi h

1 m s
i

  
     

v  
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 Thus, the driver of the north bound car was untruthful. 

6.51 Choose the x-axis to be along the original line of motion. 

 (a) From conservation of momentum in the x direction, 

     25.00 m s 0 4.33 m s cos 30.0º cosfm m m    v  

or 

2 cos 1.25 m sf  v  [1] 

  Conservation of momentum in the y direction gives 

    20 4.33 m s sin 30.0º sinfm m   v  or 2 sin 2 .16 m sf   v  [2] 

  Dividing equation [2] by [1] gives 

  
2 .16

tan 1.73
1.25




    and 60.0     

Then, either [1] or [2] gives 2f = 2.50 m/s, so the final velocity of the second ball is 

  2 2.50 m s  at 60.0f   v . 

 (b)    22 2 2
1

1 1
0 5.00 m s 12 .5 m s

2 2
i iKE m m m   v  

     

2 2
1 2

2 2 2 2

1 1

2 2

1 1
4.33 m s 2 .50 m s 12 .5 m s

2 2

f f fKE m m

m m m

 

  

v v

 

 Since KEf = KEi, this is an elastic collection . 

6.52 The recoil speed of the subject plus pallet after a heartbeat is 

  
5

4
6.00 10  m

3.75 10  m s
0.160 s

x
V

t
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 From conservation of momentum, m – MV = 0 + 0, so the mass of blood leaving the heart is 

  
4

2
3.75 10  m s

54.0 kg 4.05 10  kg= 40.5 g
0.500 m s

V
m M




  
         v

 

6.53 Choose the positive direction to be the direction of the truck’s initial velocity. 

 Apply conservation of momentum to find the velocity of the combined vehicles after collision: 

          4 000 kg 800 kg 4 000 kg 8.00 m s 800 kg 8.00 m sV      

 which yields V = + 5.33 m/s. 

 Use the impulse–momentum theorem,    av f iI F t p m     v v , to find the magnitude of the average 

force exerted on each driver during the collision. 

 Truck Driver: 

 
 truck 3

av

80.0 kg 5.33 m s 8.00 m s
1.78 10  N

0.120 s

f im
F

t

 
   



v v
 

 Car Driver: 

 
   

car 3
av

80.0 kg 5.33 m s 8.00 m s
8.89 10  N

0.120 s

f im
F

t

  
   



v v
 

6.54 First, we use conservation of mechanical energy to find the speed of m1 at B just before collision. 

 This gives 1 2
1 1 12

0 0 im m gh  v , 

 or 

    2 2
1 2 2 9.80 m s 5.00 m 9.90 m sig h  v  

 Next, we apply conservation of momentum and knowledge of elastic collisions to find the velocity of m1 at B just 

after collision. 
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 From conservation of momentum, with the second object initially at rest, we have 

 1 1 2 2 1 1 0f f im m m  v v v ,  or   1
2 1 1

2
f i f

m

m
 v v v  [1] 

 For head-on elastic collisions,  1 2 1 2i i f f   v v v v . Since 2 0i v  in this case, this becomes 

2 1 1f f     and combining this with [1] above we obtain 

  1
1 1 1 1

2
f i i f

m

m
  v v v v   or     1 2 1 1 2 1f im m m m  v v  

 so  

  1 2
1 1

1 2

5.00 10.0
9.90 m s 3.30 m s

5.00 10.0
f i

m m

m m

   
         

v v  

 Finally, use conservation of mechanical energy for m1 after the collision to find the maximum rebound height. This 

gives    g g
f i

KE PE KE PE    

 or  

 2
1 max 1 1

1
0 0

2
fm gh m  v  and 

 

 

22
1

max 2

3.30 m s
0.556 m

2 2 9.80 m s

f
h

g


  

v
 

6.55 Note that the initial velocity of the target particle is zero (that is, 2i = 0). 

 From conservation of momentum, 

 1 1 2 2 1 1 0f f im m m  v v v  [1] 

 For head-on elastic collisions,  1 2 1 2i i f f       , and with 2i = 0, this gives 

 2 1 1f i f v v v  [2] 

 Substituting equation [2] into [1] yields 

  1 1 2 1 1 1 1f i f im m m  v v v v  
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 or 

    1 2 1 1 2 1f im m m m  v v  and 
1 2

1 1
1 2

f i

m m

m m

 
   

v v     [3] 

 Now, we substitute equation [3] into [2] to obtain 

 
1 2

2 1 1
1 2

f i i

m m

m m

 
    

v v v  or 
1

2 1
1 2

2
f i

m

m m

 
   

v v      [4] 

 Equations [3] and [4] can now be used to answer both parts (a) and (b). 

(a) If 1 2 12 .0 g, 1.0 g, and 8.0 m sim m  v , then 

 1

8
 m s

3
f v  and 2

32
 m s

3
f v  

(b) If 1 2 12 .0 g, 10 g, and 8.0 m sim m  v , we find 

 1

16
 m s

3
f  v  and 2

8
 m s

3
f v  

 (c) The final kinetic energy of the 2.0 g particle in each case is 

  Case (a):  
2

2 3
1 1 1

1 1 8
2.0 10  kg  m s

2 2 3
f fKE m   
     

v 37.1 10  J  

  Case (b):  
2

2 3
1 1 1

1 1 16
2.0 10  kg  m s

2 2 3
f fKE m   
      

v 22.8 10  J  

Since the incident kinetic energy is the same in cases (a) and (b), we observe that 

  the incident particle loses more kinetic energy in case (a) . 

6.56 If the pendulum bob barely swings through a complete circle, it arrives at the top of the arc (having risen a vertical 
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distance of 2 l) with essentially zero velocity. 

 From conservation of mechanical energy, we find the minimum velocity of the bob at the bottom of the arc as 

   
bottom top

g gKE PE KE PE   , or  1 2
2

0 2M V M g  . This gives 2V g  as the needed 

velocity of the bob just after the collision. 

 Conserving momentum through the collision then gives the minimum initial velocity of the bullet as 

  2 0
2

m M g m
 

    

v
v  or 

4M
g

m
v  

6.57 We first find the speed of the diver when he reaches the water by using  

 2 2
0 2y ya y  v v . This becomes 

    2 20 2 9.80 m s 3.0 my    v , and yields 59 m sy  v  

 The negative sign indicates the downward direction. 

 Next, we use the impulse–momentum theorem to find the resistive force exerted by the water as the diver comes to 

rest. 

    net f iI F t p m     v v  or    water f iF w t m   v v  

 and 

        water 784 N 2.0 s 80 kg 0 59 m sF     
 

 

 yielding 

  3
water

80 59
784 N N = 1.1 10  N  upward

2.0
F

 
   

 
 

6.58 Use conservation of mechanical energy,    g g
B A

KE PE KE PE    , to find the speed of the bead at point B 

just before it collides with the ball. This gives, 1 2
12

0 0i Am m g y  v , 
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 or 

    2
1 2 2 9.80 m s 1.50 m 5.42 m si Ag y  v  

 Conservation of momentum during the collision gives 

        1 20.400 kg 0.600 kg 0.400 kg 5.42 m s 0f f  v v  

 or 

 1 21.50 5.42 m sf f v v  [1] 

 For a head-on elastic collision, we have  1 2 1 2i i f f   v v v v , and with 2 0i v , this becomes 

 1 2 1f f i v v v  or 1 2 5.42 m sf f v v  [2] 

 Substitute equation [2] into [1] to find the speed of the ball just after collision as 

 2 25.42 m s 1.50 5.42 m sf f  v v  or 
 

2

2 5.42 m s
4.34 m s

2.50
f  v  

 Now, we use conservation of the mechanical energy of the ball after collision to find the maximum height the ball 

will reach. This gives 

 1 2
ball max ball 22

0 0fm g y m  v  or 
 

 

22
2

max 2

4.34 m s
0.961 m

2 2 9.80 m s

f
y

g
  

v
 

6.59 From the instant it is released from rest, at 2.00 m above ground, until just before contact, the ball is a freely falling 

body with ay = –g. Its speed just before impact is given by  2 2
0 2y y ya y  v v  as  

      2 2
0 2 0 2 9.80 m s 2.00 m 6.26 m sy y ya y       v v  

 and its velocity immediately prior to impact is 6.26 m si  v . 

 After the ball leaves the ground on the rebound (to a height of 1.40 m), it is again in free-fall and 

 2 2
0 2y y ya y  v v  gives its rebound speed as 



Chapter 6 

Page 6.32 

      2 2
0 2 0 2 9.80 m s 1.40 m 5.24 m sy y ya y       v v  

 and its velocity immediately after impact is 5.24 m sf  v . 

 The impulse–momentum theorem,  av ift m m  F v v , then gives the average force acting on the ball during 

the impact as 

 
     

av

0.500 kg 5.24 m s 6.26 m s
71.9 N

0.080 0 s

ifm

t

     
   



v v
F  or 71.9 N upward  

6.60 The mass of the third fragment must be 

   27 27
3 nucleus 1 2 17 5.0 8.4 10  kg 3.6 10  kgm m m m            

 Conserving momentum in both the x- and y-directions gives the following: 

 y-direction:  1 1 2 2 3 3 0y y ym m m  v v v  

 or 

  
   27 6

1 1 2 2 6
3 27

3

5.0 10  kg 6.0 10  m s 0 30
10  m s

3.6 10  kg 3.6

y y

y

m m

m





  
      



v v
v  

x-direction: 1 1 2 2 3 3 0x x xm m m  v v v  

or 

 
   27 6

1 1 2 2 6
3 27

3

0 8.4 10  kg 4.0 10  m s 34
10  m s

3.6 10  kg 3.6

x x
x

m m

m





  
      



v v
v  

and 

      
2 2

2 2 6 6 6
3 3 3 34 3.6 10  m s 30 3.6 10  m s 1.3 10  m sx y         v v v  
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Also, 
31 1 2

3

30
tan 180º tan 180º 2.2 10  degrees 220º

34

y

x

  
   

           

v

v
 

 Therefore, 6
3 1.3 10  m s at 220º counterclockwise from the + -axisx v  

 Note that the factor of 180° was included in the calculation for  because it was recognized that both 3 3 and x yv v

were negative. This meant that   had to be a third quadrant angle. Use of the inverse tangent function alone yields 

only the principle angles (–90   +90) that have the given value for the tangent function. 

6.61 The sketch at the right gives before and after views of 

the collision between these two objects. Since the collision 

is elastic, both kinetic energy and momentum must 

be conserved. 

Conservation of Momentum: 

  1 1 2 2 1 1 2 2f f i im m m m  v v v v  

    1 2 1 0 2 00m m m m   v v v  

or 

 
1

0
2

1
m

m

 
  
 

v v  [1] 

 Since this is an elastic collision,  1 2 1 2i i f f   v v v v , and with the given velocities this becomes 

    0 0 0    v v v  or 02v v  [2] 

 (a) Substituting equation [2] into [1] gives 

  02 v 1
0

2

1
m

m

 
  
 

v  or 1 2 3m m   

 (b) From equation [2] above, we have 0 2v v . 

6.62 (a) Let 1iv  and 2iv  be the velocities of m1 and m2 just before the collision. Then, using 

  conservation of mechanical energy:    
0

g g
i

KE PE KE PE   , or 1 2
02

0 0im mgh  v , 
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  gives 

     2
1 2 02 2 9.80 m s 5.00 m 9.90 m si i g h    v v  

  and 

 1 9.90 m si  v  while 2 9.90 m si  v  

 (b) From conservation of momentum: 

             1 22 .00 g 4.00 g 2 .00 g 9.90 m s 4.00 g 9.90 m sf f   v v . 

  or 

   1 22.00 9.90 m sf f  v v  [1] 

  For an elastic, head-on collision,  1 2 1 2i i f f   v v v v , giving 

    1 29.90 m s 9.90 m s f f     v v  or 2 1 19.8 m sf f v v  [2] 

  Substituting equation [2] into [1] gives    1 12.00 19.8 m s 9.90 m sf f   v v , 

  or 

  1

9.90 m s 39.6 m s
16.5 m s

3.00
f

 
  v  

  Then, equation [2] yields 2 16.5 m s 19.8 m s 3.30 m sf     v . 

 (c) Applying conservation of energy to each block after the collision gives 

     
2 2

max

1 1
0 0

2 2
fm mgh m mg  v  or 

2

max
2

f
h

g


v
 

 Thus, 

 
 

 

22
1

1 2

16.5 m s
13.9 m

2 2 9.80 m s

f

fh
g


  

v
 

 and 
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22
2

2 2

3.30 m s
0.556 m

2 2 9.80 m s

f

fh
g

  
v

 

6.63 (a) Use conservation of mechanical energy to find the speed 1m  of just before collision. Taking 0y   at the 

 tabletop level, this gives    1 12
1 1 1 1 12 2

0 0im mg m m gh  v , or 

     2
1 12 2 9.80 m s 2.50 m 7.00 m si g h  v  

  Apply conservation of momentum from just before to just after the collision: 

         1 20.500 kg 1.00 kg 0.500 kg 7.00 m s 0f f  v v  

  or 

  1 22 7.00 m sf f v v  [1] 

  For a head-on elastic collision,  1 2 1 2i i f f   v v v v , and with 2 0i v , this becomes 

 2 1 1f f i v v v  or 2 1 7.00 m sf f v v  [2] 

  Substituting equation [2] into [1] yields 

  1 12 7.00 m s 7.00 m sf f  v v  and 1

7.00 m s
2.33 m s

3
f


  v  

  Then, from equation [2], 2 2.33 m s 7.00 m s 4.67 m sf    v . 

 (b) Apply conservation of mechanical energy to m1 after the collision to find the rebound height of this object 

     2
1 1 1 1 1

1 1
0 0

2 2
fm m gh m mg   v  or 

 

 

22
1

1 2

2.33 m s
0.277 m

2 2 9.80 m s

f
h

g


  

v
 

 (c) From 1 2
0 2y yy t a t  v , with 0 0y v , the time for m2 to reach the floor after it flies horizontally off the 

table is 
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2

2 2 2 .00 m
0.639 s

9.80 m sy

y
t

a

 
  


 

  During this time it travels a horizontal distance 

    0 4.67 m s 0.639 s 2.98 mxx t   v  

 (d) After the 0.500 kg mass comes back down the incline, it flies off the table with a horizontal velocity of 2.33 

 m/s. The time of the flight to the floor is 0.639 s as found above and the horizontal distance traveled is 

    0 2.33 m s 0.639 s 1.49 mxx t   v  

6.64 Conservation of the x-component of momentum gives 

    2 0 03 0 3xm m m   v v v  or 2 0

2

3
x v v  [1] 

 Likewise, conservation of the y-component of momentum gives 

  1 23 0y ym m  v v  and 1 23y yv v  [2] 

 Since the collision is elastic,    
f i

KE KE , or 

      2 2 2 2 2
1 2 2 0 0

1 1 1 1
3 3

2 2 2 2
y x ym m m m   v v v v v  

 which reduces to 

  2 2 2 2
1 2 2 03 4y x y  v v v v  [3] 

 Substituting equations [1] and [2] into [3] yields 

 2 2 2 2
2 0 2 0

4
9 3 4

9
y y

 
    

v v v v  or 
2 0

2

3
y v v  

 (a) From equation [2], the particle of mass m has final speed 1 2 03 2y y v v v  and the particle of mass 

3m moves at 
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  2 2 2 2
2 2 2 0 0 0

4 2 2

9 9 3
x y    v v v v v v  

 (b) 
2 01 1 1

2 0

2 3 1
tan tan tan  35.3°

2 3 2

y

x

   
    

           

v v

v v
 

6.65 (a) The momentum of the system is initially zero and remains constant throughout the motion. Therefore, when 

 m1 leaves the wedge, we must have 2 wedge 1 block 0m m v v , or 

   1
wedge block

2

0.500
4.00 m s 0.667 m s

3.00

m

m

   
          

v v  

 (b) Using conservation of energy as the block slides down the wedge, we have 

     g g
i f

KE PE KE PE   , or 

  2 2
1 1 block 2 wedge

1 1
0 0

2 2
m gh m m   v v  

 Thus, 

  

   

22 2
block wedge

1

2 2

2

1

2

1 3.00
4.00 m s 0.667 m s 0.952 m

19.6 m s 0.500

m
h

g m

  
   

   

  
       

v v

 

6.66 Choose the positive x-axis in the direction of the initial velocity of the cue ball. Let civ  be the initial speed of the 

cue ball, cfv  be the final speed of the cue ball, Tfv  be the final speed of the target, and  be the angle the target’s 

final velocity makes with the x-axis. 

 Conservation of momentum in the x-direction, recognizing that all billiard balls have the same mass, gives 

  cos cos 30.0º 0Tf cf cim m m   v v v  or cos cos 30.0ºTf ci cf  v v v  [1] 

 To conserve momentum in the y-direction, recognize that the y-components of the final velocities of the target and 

cue balls must have opposite signs. Thus, if the cue ball scatters at 30.0° below the x-axis, the target ball must 
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scatter at angle  above the x-axis. The conservation equation for momentum in the y-direction is: 

  sin sin 30.0º 0 0Tf cfm m   v v  or sin sin 30.0Tf cf  v v  [2] 

 Since this is an elastic collision, kinetic energy is conserved, giving 

  2 2 2
1 1 1

2 2 2
Tf cf cim m m v v v  or 

2 22
Tf ci cf v v v  [3] 

 (b) To solve, square equations [1] and [2] and add the results to obtain 

     2 22 2 2 2 2cos sin 2 cos 30.0º cos 30.0º sin 30.0°Tf ci ci cf cf     v v v v v  

 or 
2 22 2 cos 30.0Tf ci ci cf cf   v v v v v  

  Now, substitute this result into equation [3] to get 

  2
civ 2 22 cos 30.0ºci cf cf ci  v v v v 2

cf v  or  2 cos 30.0º 0cf cf ci v v v  

  Since 0cf v , it is necessary that  cos 30.0º 4.00 m s cos 30.0º 3.46 m scf ci  v v . 

  Then, equation [3] yields 22
Tf ci cf v v v , or 

     
2 2

4.00 m s 3.46 m s 2.00 m sTf   v  

 (a) With the results found above, equation [2] gives 

   
3.46 m s

sin sin 30.0º sin 30.0º 0.866
2.00 m s

cf

Tf


   

       

v

v
, or 60.0    

  Thus, the angle between the velocity vectors after collision is 

   60.0° 30.0° 90.0°     

6.67 (a)  Use conservation of the horizontal  

 component of momentum from just  

 before to just after the cannon firing. 

     x xf i
p p    gives 

   shell shell cannon recoilcos 45.0° 0m m v v , 

 or 
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shell

recoil shell
cannon

cos 45.0°
m

m

 
   

 
v v  

   
200 kg

125 m s cos 45.0º 3.54 m s
5 000 kg

 
     

 

 (b) Use conservation of mechanical energy for the cannon-spring system from right after the cannon is fired to 

 the instant when the cannon comes to rest. 

     g s g s
f i

KE PE PE KE PE PE      

 22
max cannon recoil

1 1
0 0 0 0

2 2
kx m    v  

 
   

2
2

cannon recoil
max 4

5 000 kg 3.54 m s
1.77 m

2.00 10  N m

m
x

k


  



v
 

 (c)    4 4
max max 2 .00 10  N m 1.77 m 3.54 10  NF k x      

 (d) No. The rail exerts a vertical external force (the normal force) on the cannon and prevents it from recoiling 

 vertically. Momentum is not conserved in the vertical direction. The spring does not have time to stretch 

 during the cannon firing. Thus, no external horizontal force is exerted on the system (cannon plus shell) from 

 just before to just after firing. Momentum is conserved in the horizontal direction during this interval. 

6.68 Observe from Figure P6.68, the platform exerts 

a 0.60-kN to support the weight of the standing 

athlete prior to t = 0.00 s. From this, we determine 

the mass of the athlete: 

  
2

0.60 kN 600 N
61 kg

9.8 m s

w
m

g g
     

 For the interval 0.00 s to 1.0 st t  , we subtract the 0.60-kN used to counterbalance the weight to get the net 

upward force exerted on the athlete by the platform during the jump. The result is shown in the force versus time 

graph at the right. The net impulse imparted to the athlete is given by the area under this graph. Note that this area 

can be broken into two triangular areas plus a rectangular area. 

 The net upward impulse is then 
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1 1

0.50 s 100 N 0.50 s 300 N 0.50 N 100 N 150 N s
2 2

I       

 The upward velocity iv  of the athlete as he lifts off of the platform (at 1.0 st  ) is found from 

  0

150 N s
0    2.5 m s

61 kg
i i i

I
I p m m m

m


         v v v v  

 The height of the jump can then be found from 2 2 2f i ya y  v v  (with 0f v ) to be 

  
 

 

22 2

2

0 2.5 m s
0.31 m

2 2 9.8 m s

f i

y

y
a

 
   



v v
 

6.69 Let particle 1 be the neutron and particle 2 be the carbon nucleus. Then, we are given that 2 112m m . 

 (a) From conservation of momentum 2 2 1 1 1 1 0f f im m m  v v v . 

  Since 2 112m m , this reduces to 

   2 1 112 f f i v v v   [1] 

  For a head-on elastic collision 

    1 2 1 2i i f f   v v v v  

  Since 2 0i v , this becomes 

   2 1 1f i f v v v  [2] 

  Substitute equation [2] into [1] to obtain  1 1 1 112 i f f i  v v v v , or 

   1 113 11f i v v  and 1 1

11

13
f i v v  

  Then, equation [2] yields 

   2 1

2

13
f iv v  
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  The initial kinetic energy of the neutron is 1 2
1 1 12i iKE m v , and the final kinetic energy of the carbon nucleus 

is 

    2 2 2
2 2 2 1 1 1 1 1

1 1 4 48 1 48
12

2 2 169 169 2 169
f f i i iKE m m m KE

   
         

v v v  

  The fraction of kinetic energy transferred is 
2

1

48
0.28

169

f

i

KE

KE
  . 

 (b) If 13
1 1.6 10  JiKE   , then 

    13 14
2 1

48 48
1.6 10  J 4.5 10  J

169 169
f iKE KE        

  The remaining energy 13 14 131.6 10  J 4.5 10  J 1.1 10  J        stays with the neutron. 

6.70 (a)  

  

 (b) From Newton’s third law, the force 
BA
F  exerted by B on A is at each instant equal in magnitude and opposite 

 in direction to the force 
AB
F  exerted by A on B. 

 (c) There are no horizontal external forces acting on system C which consists of both blocks. The forces 
BA
F  

 and 
AB
F  are internal forces exerted on one part of system C by another part of system C. 

  Thus, 

   external
0     0C

C
t


     



p
F p  

  This gives 
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          C C A Bi if i
  p p p p  or    2 0M M V M   v  

  so the velocity of the combined blocks after collision is 3V   v . 

  The change in momentum of A is then 

       2 3
3

A A Af i
MV M M M

 
          
p p p

v
v v v  

  and the change in momentum for B is: 

       2 0 2 2 3
3

B B Bf i
MV M M

 
         
p p p

v
v  

 (d)         
2

1 1 12 2
2 2 3

3 0
3

C A Bf i
KE KE KE KE M M M

 
               

v
v v  

  Thus, kinetic energy is not conserved in this inelastic collision . 

6.71 (a) The owner’s claim should be denied . Immediately prior to impact, the total momentum of the two-car 

system had a northward component and an eastward component. Thus, after impact, the wreckage moved in a 

northeasterly direction and could not possibly have damaged the owner’s property on the southeast corner. 

 (b) From conservation of momentum: 

            1 2 1 1 2 2after before
    x x x i ix x

p p m m m m    v v v , 

 or 

  
       1 1 2 2

1 2

1 300 kg 30.0 km h +0
 16.3 km h

1 300 kg 1 100 kg

i ix x
x

m m

m m


  

 

v v
v  

           1 2 1 1 2 2
after before

    y y y i iy y
p p m m m m    v v v  

 or 

  
       1 1 2 2

1 2

0 1 100 kg 20.0 km h
 9.17 km h

1 300 kg 1 100 kg

i iy y

y

m m

m m

 
  

 

v v
v  

  Thus, the velocity of the wreckage immediately after impact is 
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   2 2 18.7 km hx y  v v v  and  1 1tan tan 0.564 29.4
y

x

  
 

    
 

v

v
 

 or 18.7 km h  at 29.4° north of east, consistent with part (a)v  

6.72 Ignoring the force of gravity during the brief collision time, we use the conservation of momentum to obtain: 

             0.45 kg 60 kg 0.45 kg 25 m s 60 kg 4.0 m sbf pf   v v  

 or 

   33.8 m s 7.5 10pf bf
  v v  [1] 

 Also, elastic collision       25 m s 4.0 m sbf pf bi pi        v v v v , or 

  29 m sbf pf v v  [2] 

 Substituting equation [1] into [2] yields 

  
3

29 m s 3.8 m s
33 m s

1 7.5 10
bf 


 

 
v  

 The average acceleration of the ball during the collision is 

  
 

3 2
av 3

33 m s 25 m s
2.9 10  m s

20 10  s

bf bi
a

t 

  
   

 

v v
. 

6.73 (a) The speed iv  of both balls just before the basketball reaches the ground may be found from 

2 2
0 2y y ya y  v v  as 

     2 2
0 2 0 2 9.80 m s 1.20 m s 4.85 m si y ya y       v v  

 (b) Immediately after the basketball rebounds from the floor, it and the tennis ball meet in an elastic collision. 

 The velocities of the two balls just before collision are: 

  For the tennis ball: 1 4.85 m si i   v v  

  For the basketball: 2 4.85 m si i   v v  
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  We determine the velocity of the tennis ball immediately after this elastic collision as follows: 

  Momentum conservation gives 

              1 257.0 g 590 g 57.0 g 4.85 m s 590 g 4.85 m sf f    v v  

  which reduces to 

    2
2 14.38 m s 9.66 10f f

  v v  [1] 

  Elastic Collision  1 2 1 2 1 2 1 2          or          i i f f f f i i       v v v v v v v v  

  so 

    1 2 4.85 m s 4.85 m sf f   v v  and 1 2 9.70 m sf f v v  [2] 

  Substituting equation [1] into [2] gives 
2

1(1 9.66 10 ) 4.38 m s 9.70 m sf
   v , or 

   1 12.84 m sf  v  

  The vertical displacement of the tennis ball during its rebound is given by 
2 2

0 2y y ya y  v v  as 

   
 

 

22 2
0

2

0 12.84 m s
8.36 m

2 2 9.80 m s

y y

y

y
a

 
   



v v
 

6.74 The woman starts from rest 0( 0)y v  and drops freely with ya g  for 2.00 m before the impact with the 

toboggan. Then, 
2 2
2 0 2 ( )i y ya y  v v  gives her speed just before impact as 

       2 2
2 0 2 0 2 9.80 m s 2.00 m 6.26 m si y ya y       v v  

 The sketches at the right show the  

situation just before and just after 

the woman’s impact with the 

toboggan. Since no external forces 

impart any significant impulse 

directed parallel to the incline 

(+x-direction) to the system 

consisting of man, woman, and 

toboggan during the very brief 

duration of the impact, we will consider the total momentum parallel to the incline to be conserved. That is, 

     1 2 1 1 2 2 1 1 2 2 sin 30.0f i i i ix
m m m m m m     v v v v v  
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 or the speed of the system immediately after impact is 

  
       1 1 2 2

1 2

90.0 kg 8.00 m s 55.0 kg 6.26 m s sin 30.0ºsin 30.0º
6.15 m s

90.0 kg 55.0 kg

i i
f

m m

m m


  

 

v v
v  

6.75 First consider the motion of the block and embedded bullet from immediately after impact until the block comes to 

rest after sliding distance d across the horizontal table. During this time, a kinetic friction force 

 k k kf n M m g    , directed opposite to the motion, acts on the block. The net work done on the (block 

plus bullet) during this time is 

      2
net

1
cos180º 0

2
k f iW f d KE KE M m V        

 so the speed, V, of the block and embedded bullet immediately after impact is 

  
 

22 kk
M mf d

V
M m

 
 

 

  gd
M m

2 kgd  

 Now, make use of conservation of momentum from just before to just after impact to obtain 

     0           2xi xf kp p m M m V M m gd     v  

 and the initial velocity of the bullet was 

  0  2 k

M m
gd

m


 
   

v  

6.76 (a) Apply conservation of momentum in the vertical direction to the squid-water system from the instant before 

 to the instant after the water is ejected. This gives 

     0s s w w s wm m m m  v v  or  
0.30 kg

20 m s 7.1 m s
0.85 kg

w
s w

s

m

m

   
          

v v  

 (b) Apply conservation of mechanical energy to the squid from the instant after the water is ejected until the 

 squid reaches maximum height to find: 
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   1 2
2

0 s f s s im gy m mgy  v  or 
 

 

2
2

2

7.1 m s
2.6 m

2 2 9.8 m s

s
f iy y y

g
     

v
 

6.77 (a)  

 The situations just before and just after the collision are shown above. Conserving momentum in both the x- and y-

directions gives 

     1 1 2 2  sin 53º sin 0y y f f
f i

p p m m    v v  or 2 2 1 1sin sin 53f fm m  v v  [1] 

     1 1 2 2 1 1  cos 53° cos 0x x f f if i
p p m m m    v v v , 

or 

 2 2 1 1 1 1cos  cos 53°f i fm m m  v v v  [2] 

  Dividing equation [1] by [2] yields 

   
 

   
1

1 1

sin 53 1.0 m s sin 53
tan 0.57

cos 53 2.0 m s 1.0 m s cos 53

f

i f


 

  
   

v

v v
 or 30°   

  Equation [1] then gives 

   
   

 
1 1

2
2

sin 53 0.20 kg 1.0 m s sin 53
1.1 m s

sin 0.30 kg sin 30

f

f

m

m 

 
  



v
v  

 (b) The fraction of the incident kinetic energy lost in this collision is 

  
       

   

2 21 1
2 2

21
2

0.20 kg 1.0 m s 0.30 kg 1.1 m s
1 1

0.20 kg 2.0 m s

i f f

i i i

KE KE KEKE

KE KE KE

 
      

 0.30
i

KE

KE


  or 30%  
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6.78  

  Using the work–energy theorem from immediately after impact to the end gives 

   net end aftercos180°kW f s KE KE    

 or 

      2
1

0
2

k M m g s M m V        and 2 kV g s  

 Then, using conservation of momentum from immediately before to immediately after impact gives 

 0m M m V  v , or 

      2
112 g

2 2 0.650 9.80 m s 7.5 m
12 .0 g

k

M m M m
V g s

m m


     
            

v  

91 m sv  

 


