Chapter 6

PROBLEM SOLUTIONS

6.1 Usep =mov

(@) p=(1.67 x 10727 kg)(5.00 x 10° m/s) =|8.35 x 10> kg m/g

(b) p=(1.50x102kg)(3.00 x 10* m/s) = 4.50 kg m/s
(c) p=1(75.0kg)(10.0 m/s) =750 kg m/s

(d)  p=(5.98-10*kg)(2.98 x 10* m/s) =|1.78 x 10* kg vy

6.2 From the impulse—-momentum theorem,
F,, (At) =Ap=mv, —my,

Thus,

m(v, =v,) (55107 ke)(2.0 x 102 ft/s —0) (| m/s )

O Vv I 0.0020 s — 0 (3281 fs) ~

6.3 (@) If Ppan = Poulter, then

(3.00 x 10 kg)(1.50 x 10° m/s)

0.145 kg -

_— MyutietVoullet
ball = =

Mpall

(b) The kinetic energy of the bullet is

(3.00 x 1073 kg)(1.50 x 10° m}s)’
2

=338x10%1]

1
_ 2
KEyee = Embulletvbullet =

while that of the baseball is

(0.145 kg) (31.0 m/s)’
2

1
KE, = Emballvball = =69.71]

The |bullet has the larger kinetic energy‘ by a factor of 48.4.
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Chapter 6

(a) Since the ball was thrown straight upward, it is at rest momentarily (v = 0) at its maximum

height. Therefore, p = @

(b)  The maximum height is found from V; = V§, + 2a,(A)) with v, =0.

O = V(z)y + 2 (_ g) (Ay)max . Thus,

Voy y
Vi = V%y + 2(—g)L4—J = 7, or Vy = =

Therefore,

(0.10 kg) (15 m/s)

p=mv, = A =|[1.1 kg - m/s | upward

@ 1=F,(Ar)=|ap|=m|v, —v,| = (84.0kg)[0 - 6.70 m/s| =

) FaV:L:M: 51N

At 0.750 s

2
2 22 v 2
KEzmvzmvz(m)zp
2 2m 2m 2m

From problem 6.6, KE =p2/2m, and hence, p = ,[2m (KE) . Thus,

P2 (25.0 kg - m/s)2

"T2kE T 2(2750) =[114kg
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and

2m (KE)

P ~ 2(KE)_ 2(275J)_

6.8 (a) The impulse delivered by a force is equal to the area under F(N) F=18000N
the force versus time curve. From the figure at the right, 20000 \
this is seen to be a triangular area having a base of 15000 JA\
1.50 ms = of 1.50 x 10~ s and altitude of 18 000 N. Thus, 10000 / \
5000
1 0o 1 2 f(ms)
I= 5(1.50 x 107 s)(18 000 N) = [13.5N - s
1 135N -s
b) F,=—=—"-—""—=900x10>N = [9.00 kN|
®) MOOAt 1.50x1073 s
6.9 (a) We choose the positive direction to be the direction of the final velocity of the ball.

I=Aap=m(v, -v,) = (0.280 kg)[+22.0 m/s — (~15.0 m/s)]

or

I =+10.4 kg-m/s = |10.4 kg - m/s in the direction of the final velocity

(b) The average force the player exerts on the ball is

I 104 kg-m/s
FE =—="—— "' - -173 N
oAt 0.060 0's

By Newton’s third law, the ball exerts a force of equal magnitude back on the player’s fist.

i

6.10 (a) |Faw = where / is the impulse the man must deliver to the child: |I | = Myig ‘v - Vo‘ .

 maa[Vr = Vo| (12,0 k)]0 — 120 mi/h| (0,447 m/s) .
1Pl = At - 0.10's 1 mi/h )
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Chapter 6

or

0.224 8 1b

|Fy| = (6.4 x 103 N)( N

jz 1.4 x 103 Ib

(b) It is unlikely that the man has sufficient arm strength to guarantee the safety of the child during a collision.

The violent forces during the collision would tear the child from his arms.

(¢) The laws are soundly based on physical principles: always wear a seat belt when in a car.

The velocity of the ball just before impact is found from V3 = Vg, + 2a,Ay as

v, = =3, + 24,4y = -0+ 2(-9.80 m/s?)(~125m) = —4.95 m/s

and the rebound velocity with which it leaves the floor is

vy = +\V3 —2a,Ay = +J0 - 2(-9.80 m/s?)(+0.960 m)

The impulse given the ball by the floor is then

+4.34 m/s

I =FAt = A(mV) = m(V, - V,)

(0.150 kg)[ +4.34 m/s — (—4.95 m/s)] = +1.39N s = [1.39 N - s upward

Take the direction of the ball’s final velocity (toward the net) to be the +x-direction.

(@ 1 =Ap=m(v, —v,)=(0.0600 kg)[40.0 m/s - (~50.0 m/s)], giving

I=+540 kg -m/s = | 5.40 N - s toward the net|

(b) Work = AKE = %m(v} - v.2)

1

(0.0600 kg)[(40.0 m/s)’ - (50.0 m/S)z}

I = F, (At) = Ap = m(Av)
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Thus, || = m|Av| = (70.0 kg)(5.20 m/s - 0) = [364 kg - m/s ], and

1 364 kg - m/s

F,=—=—""—=2—"1" = 438kg - m/s?
Sy 0.832's g m/
or
Fav = | 438 N directed forward
6.14 Choose toward the east as the positive direction.
(a) The impulse delivered to the ball as it is caught is
I=Ap =mv, —mv, = 0—(0.500 kg)(+15.0 m/s) = —7.50 kg - m/s
or
I= | 7.50 kg - m/s westward
(b) The average force exerted by the ball on the receiver is the negative of the average force exerted by the
receiver on the ball, or
- = 1 -7.50 kg - m/s)
F = — F = —_—— = - —_— —
( av )receiver ( av )ball At [ 0.0200 s 375N
(Fav) = | 375 N eastward |
6.15 (a) The impulse equals the area under the F versus ¢ graph. This area is the sum of the area of the rectangle plus
the area of the triangle. Thus,
1
I =(20N)(3.0s)+—=(2.0N)(2.0s) =|80N-s
(20N)(3.05) + Z(20N)(2.05)
(b) 1= F, (A1) =2p=m(v, -v]

80ON-s = (1.5 kg) v, —0, giving v, =
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1
(© I=F@Q)=20p=m{;—-V,), s0 V, =V, +—
m

80N -s
Vv, = 20 m/s+ — =|3.3 m/s
/ 5t ke

6.16 (a) Impulse = area under curve = (two triangular areas of altitude 4.00 N and base 2.00 s) + (one rectangular area

of width 1.00 s and height of 4.00 N.) Thus,

I= 2{(4'00 Nl(z.oo S)} +(4.00N)(1.00 s) =

1
(b) I=F,(At)=Ap= m(vf —vl.), S0V =V 4

1 120N -s
Ve =V, + —=-2.00 +——— =400
(© S o m/s 2.00 kg

6.17 (a) The impulse is the area under the curve between 0 and 3.0 s. This is

I =(40N)3.0s) =

(b) The area under the curve between 0 and 5.0 s is

I =@40N)3.0s)+ (—2.0N)2.0s) =

() I=F,(At)=2Ap= m(vf —vl.), S0V, =V, +é
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1 8.ON -
ALS0s: Ny =V o= 0+ 150kg5=

s _Ap Ap Ap
618 F =— 50 (Fy), = ~ (Fu), = A_ty

ml:(vy)f B (Vy)l] ~ m[Vcos60.0° — v cos 60.0°]

(£ )y - At - At h
m|:(ux)f - (Ux)i:| m[(—usin60.0°) —(+Usin60.0°)]
(% )x - At - At
_ —2mvsin60.0°  —2(3.00 kg)(10.0 m/s)sin 60.0°
- At - 0.200 s
=260 N
F w = | 260 N in the negative x-direction or perpendicular to the wall

619 @ oo Ax 2(Ax)  2(1.20 m) :

Voo  Vy otV 0+250 m/s

av

(b) F;w _ ﬁ _ m(AV) _ (1 400 kg)(250 m/s) _
At At 9.60 x 1072 s

Av 25.0 m/s

_ _ _ ( lg \_
A " 960 <1075 = 260 m/st = (260 m/sz)ka B

© a =

6.20 Choose the positive direction to be from the pitcher toward home plate.

(@ 1=F,(A)=ap=m(v, -¥,)=(0.15kg)[(-22 m/s) - (20 m/s)]

I1=F, (At) =-6.3 kg-m/s or | 6.3 kg - m/s toward the pitcher |

(b) f:‘av ZLZM:—}lemN
At 2.0x1073 s

or
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F,, =|3.2 x 10® N toward the pitcher

6.21 Requiring that total momentum be conserved gives
(mclubUclub + M1 Vparn ) = (mclub Uctub T Mhatt Vpali ),-

or

(200 g) (40 m/s) + (46 g) vy = (200 g)(55 m/s) + 0
and

6.22 (a) The mass of the rifle is

w 30N [30]
g 9.80 m/s? 9.8

We choose the direction of the bullet’s motion to be negative. Then, conservation of momentum gives

or
[(30/9.8) kg ]V, + (5.0 x 107 kg) (300 m/s) = 0 +0
and

9.8(5.0 x 107 kg) (300 m/s)

Viifle = 30 kg =

(b) The mass of the man plus rifle is

730 N

= PN 45k
"7 9.80 m/s? 8

We use the same approach as in (a), to find
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(5.0 x 103 kg

YT 7a5kg )

(300 m/s) = [2.0 x 102 m/s |

6.23 The velocity of the girl relative to the ice, vg, 1S vgr = vgp T Lpr Where vgp = velocity of girl relative to plank, and

vpr = velocity of plank relative to ice. Since we are given that pgp = 1.50 m/s, this becomes

Vg = 1.50 m/s + vy, [1]

(a) Conservation of momentum gives
Mg
mgVgy + mpVpy = 0 or Vp = _Lm_J Var (2]
Then, Equation [1] becomes
((mg ) ( )
Vg = 1.50 m/s — kEJ Vg or kl + m—GJ Vg = 1.50 m/s
np mp

giving

1.50 m/s
Vog = ——— = | 1.15 m/s
ook (115 m/s ]

L 150 kg

(b) Then, using [2] above,

} 1.15 m/s) = —0.346 m/s

or Vp; = | 0.346 m/s directed opposite to the girl’s motion | .

6.24 We shall choose southward as the positive direction.

The mass of the man is

m= Yo BN sk
g 9.80 m/s?
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Then, from conservation of momentum,

we find

(mmanvman + mbookvbook )f = (mmanvman + mbookvbook )i

or

(74.5kg) Upan + (1.2 kg)(-5.0 m/s) =0 +0 and Vian = 8.1 x 1072 m/s

Therefore, the time required to travel the 5.0 m to shore is

Ax 5.0m
t = = = =|62s
Upan 8.1 x 1072 m/s
6.25 (a) Using subscript a for the astronaut and ¢ for the tank, conservation of momentum gives 1,0, + M0y = MU,

+ m,v,;. Since both astronaut and tank were initially at rest, this becomes
mN_+mNV, =0+0 orv ( " ) v
: - = orV,, = —| —
aVaf Vi of LmaJ e

The mass of the astronaut alone (after the oxygen tank has been discarded) is m, = 75.0 kg.

Taking toward the spacecraft as the positive direction, the velocity imparted to the astronaut is

_ (12.0kg) B
Yo = (750 ke (-8.00 m/s) = +1.28 m/s

and the distance she will move in 2.00 min is

d =Vt =128 m/s)(120s) = [154 m

(b) By Newton’s third law, when the astronaut exerts a force on the tank, the tank exerts a force back on the

astronaut. This reaction force accelerates the astronaut towards the spacecraft.

6.26 (a) Using subscript ¢ for the (flatcar + cannon) and p for the projectile, conservation of momentum in the
horizontal direction gives 7. (ch)x +m, (fo )x =m, (Vc,- )x +m, (Vp,- )x . Assuming that the flatcar,

cannon, and projectile were initially at rest,Vy; = V,; = 0, giving the initial recoil speed of the (flatcar +

cannon) as
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1.00 ton )
- (MJ (1'00 x 10° m/S)cos30.0 =

(b) The flatcar, cannon, and Earth undergo a change in momentum in the y-direction that is equal an opposite the
vertical component of momentum imparted to the projectile. Because of the great mass of Earth, however, the

effect goes unnoticed.
Consider the thrower first, with velocity after the throw of vy,,wer- Applying conservation of momentum yields

(65.0 kg)v +(0.045 0 kg)(30.0 m/s) = (65.0 kg + 0.045 0 kg)(2.50 m/s)

thrower

O Viprower = | 248 m/s

Now, consider the (catcher + ball), with velocity of v, after the catch. From momentum conservation,
(60.0 kg + 0.045 0 kg) V yener = (0.045 0kg)(30.0 m/s) + (60.0 kg)(0)

or

Veaeher = | 2:25 x 102 m/s |

catcher

(a) B exerts a horizontal force on A.
(b) A exerts a force on B that is opposite in direction to the force B exerts on A.
(c) The force on A is equal in magnitude to the force on B, but is oppositely directed.

(d)  Yes. The momentum of the system (the two skaters) is conserved because the net external force on the

system is zero (neglecting friction).

(e) (Apx)syswm = (Ap,), +(Ap,), =0 = m, (v, —0)+my(vy —0)=0

(m,

\ (g )
Va =) Ve = —LWJ (2.00 m/s) = —2.22 m/s

Va = | 2.22 m/s in the direction opposite to :/B |
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6.29 (a) Man | ” Wwife | %2 Couple i
m my mq + my
Before impact After impact

(b) The collision is best described as fperfectly inelastic|, because the skaters remain in contact after the collision.

(C) |mv + m,V :(m +m)V| (d) Y :M
V1 2V2 1 2)Vy S m, + m,
70.0 kg)(8.00 m/s) + (50.0 kg)(4.00 m/s
© v, :( g)( /) ( g)( /):
' 70.0 kg + 50.0 kg
6.30 Consider a system consisting of arrow and target from the instant just before impact until the instant after the arrow

emerges from the target. No external horizontal forces act on the system, so total horizontal momentum must be
conserved, or
(mv, +my, ) = (mav, +my,)

i

Thus,

(22.5 g)(+35.0 m/s) + (300 g)(-2.50 m/s) - 0

6.31 When Gayle jumps on the sled, conservation of momentum gives

(50.0 kg + 5.00 kg)v, = (50.0 kg)(4.00 m/s) + 0

or the speed of Gayle and the sled as they start down the hill is v, = 3.64 m/s.

After Gayle and the sled glide down 5.00 m, conservation of mechanical energy (taking y = 0 at the level of the top
of the hill) gives

%(55.0 kg) V3 +(55.0 kg)(9.80 m/s?)(-5.00 m) = %(55.0 kg)(3.64 m/s)* + 0

so Gayle’s speed just before the brother hops on is v; = 10.5 m/s.

After her Brother jumps on, conservation of momentum yields
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(55.0 kg + 30.0 kg) v, = (55.0 kg)(10.50 m/s) + 0

and the speed of Gayle, brother, and sled just after brother hops on is v, = 6.82 m/s.

After all slide an additional 10.0 m down (to a level 15.0 m below the level of the hilltop), conservation of

mechanical energy from just after brother hops on to the end gives the final speed as

%Mvg + (85:0kg) (9.80 m/s?)(~15.0 m)
- %M(é.& m/s)’ + (85:0kg) (9.80 m/s?)(-5.00 m)

6.32 For each skater, the impulse—momentum theorem gives

| | _ |Ap| |AV| _ (750 kg)(SOO m/s) _
At 0.100 s
Since F,, <4500 N, there are .

6.33 (a) If M is the mass of a single car, conservation of momentum gives

(3M)v, = M(3.00 m/s) + (2M)(1.20 m/s) or v, =

(b)  The kinetic energy lost is KE,,y = KE; — KE; or

KE,,, = %M(&OO m/s) + %(21\4)(1.20 m/s)’ - %(3M)(1.80 m/s)’

With M = 2.00x10* kg, this yields KE,,, = | 2.16 x 10*J

6.34 (a)  From conservation of momentum, o
(3M) Vf = le + (ZM) Va J'\_I_\J'L J\ lul—l
Before
Uf
or 5
l M | | M | | M rl_
After
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1
v, = g(v1 + 2V, )

(b) The kinetic energy before is
1 1 M
- = My24 — 2 X (2 2
KE; = - Mvi+ 2(2M)v2_ > (v +2v3)

1

After collision:

2
1 3IM | (V) + 2v, M
KE, = E(3M)V~2f = % = ?(v% + 4V, + 4v3)
or
KE, = %v% + %vlv2 + %v%

The kinetic energy lost is

KE, - KE, = [l - l] Mv? + [1 - gj Mvi — 2lev2
2 6 3 3

or

M M
KE, — KE, = ?(vf +V3-2vy, ) = ?(v1 -v, )

6.35 (a) Because momentum is conserved even in a perfectly inelastic collision such as this, the

ratio is ..

b = (m + my)v, = mv,; + m, (0) v, = Vi
b prr=p = my + my )V, = mVy; +m, or r = m, + m,
KE, = ~my2 + L m (0) = —myV3 and  KE =1(m + my ) V3

i ) 1713 2 2 2 1713 f 2 1 2)Vf
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KE, (m +m)V} (m +m,) mi R, m
) = = -

2 2
KE; mVi; mlbﬁ-\ (my + my) m + m

Let us apply conservation of energy to the block from the time just after the bullet has passed through until it

reaches maximum height in order to find its speed V just after the collision.
! mv? + m ! mvZ + becomes ! V2+0=0+

— mv; P == m —m = m

5 4% 5 T &Yy > 8V

or

v=J2gy, = \/2(9.80 m/s?)(0.120 m) = 1.53 m/s

Now use conservation of momentum from before until just after the collision in order to find the initial speed of the

bullet, v.

(7.0 x 1073 kg)v + 0 = (1.5 kg)(1.53 m/s) + (7.0 x 10~ kg)(200 m/s)

from which v = | 5.3 x 102 m/s
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The leftmost part m

of the sketch depicts 4
the situation from
when the actor

starts from rest R

until just before he

makes contact with

. . v, =0 my+ny h
his costar. Using éltt _____ y=0 - - - ;'-v.---... m,
. ar ’ -
conservation of 0y @U’
Just before Tust after

energy over this

period gives

(KE + PE), = (KE + PE),

or
1 2
Emlv1 +0 =0+ mgR

so his speed just before impact is

v, = 2R = [2(9.80 m/s?)(3.75 m) = 8.57 m/s

Now, employing conservation of momentum from just before to just after impact gives

_ ~omy,  (80.0kg)(8.57 m/s)
(ml + mz)v0 = mV, + m, (0) or vy = p—— =200 kg + 55.0 kg = 5.08 m/s

Finally, using conservation of energy from just after impact to the end yields

(KE + PE), = (KE + PE), or 0+ (my~+t, ) gh =

and

2
[E

N | —

5 2
ho V8 _ (5.08 m/s) _ 324

2¢ 2(9.80 m/s?)
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6.38

Consider the sketches above which show the situation just before and just after collision.

Conserving momentum in y-direction: p,, = p,;, = lef sin37.0° — >n\vzf sin53.0° = 0, or

B (sin 37.0°

Vyp = —————— v, = 0.754v
2/ sin53.0°) v 1/

Now, conserving momentum in the x-direction:

Py = Py = lef c0s37.0° + Mvzf €08 53.0° = v, + 0

or

vy, €0s37.0° + (0.754V1f)cos 53.0° = v,

and

vy,

3 ; B 5.00 m/s 3
Vi = c0s37.0° + (0.754)005 53.0° c0s37.0° + (0.754)cos 53.0°

Then,

Vo, = 0.754v,, = 0.754(3.99 m/s) =

Now, we can verify that this collision was indeed an elastic collision:

KE, = %mvﬁ. = %(s.oo m/s)* = m(12.5 m?/s?)
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and
1 1 m 2 m 2
KE; = —mviy + —mv3, = (3.9 m/s) + (3.01 m/s)" = m(12.5 m2/s?)

so KE,= KE, which is the criteria for an elastic collision.

6.39 Let M = mass of ball, m = mass of bullet, v = velocity of bullet, and V' = the initial velocity of the ball-bullet

combination. Then, using conservation of momentum from just before to just after collision gives

(M+m)V=mv+0 or V:[ " jv
M+ m

Now, we use conservation of mechanical energy from just after the collision until the ball reaches maximum height

to find

1 2 ?
0+(M+m)ghmaX=E(M+m)V2+0 or hmaxzi=g( ’;n"_m) V2

With the data values provided, this becomes

1 ( 0.030 kg
hmax = ( 2 L
9.80 m/s? )\ 0.15 kg + 0.030 kg

\2
J (200 m/s)2 =|57m

6.40 First, we will find the horizontal speed, vy,, of the block and embedded bullet just after impact. After this instant,

the block-bullet combination is a projectile, and we find the time to reach the floor by use of Ay = v, 7 + %ay 2,

which becomes

-1. 00m—0+5( —-9.80 m/s? )tz,giving t=0.452s
Thus,
Vo, = 2% = 200 3 s

* t 0.452 s

Now use conservation of momentum for the collision, with v, = speed of incoming bullet:
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(8.00 x 107 kg)v, + 0 = (258 x 1073 kg)(4.43 m/s), so0

» =|143 m/s (about 320 mph)
6.41 First, we use conservation of mechanical energy to find the speed of the block and embedded bullet just after
impact:

(KE + PES)f = (KE + PE,). becomes %(m +M)V2+0=0+ %ka

and yields

V:

e J(150 N/m)(0.800 m)” _ 203 ms

m+ M\ (0.0120 + 0.100) kg

Now, employ conservation of momentum to find the speed of the bullet just before impact: mov + M (0) = (m + M)

V, or

V=(m+M]V (0112kg

6.42 (a) Conservation of momentum gives M7V + MmN = mpVip + m\V;.  or

mpV,p + m, (Vic - vfc)

mr

Vo =

(9000 kg)(20.0 m/s) + (1200 kg)[(25.0 —18.0) m/s ]
B 9 000 kg

Vo = | 20.9 m/s East |

2

Sl =)o (vt = i)

%[(1 200 kg) (625 — 324)(m?/s?) + (9 000 kg) (400 — 438.2) (m2/s?) |

1 1 1 1
(b) KE,. = KE, - KEf = [ mcvfc 3 mTVl.zT:| - {E mcvjzfc + EmTV%T:|
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KE, ., = |8.68 x 103 J, which becomes internal energy

Note: 1£20.9 m/s were used to determine the energy lost instead of 20.9333 as the answer to Part (a), the answer

would be very different. We have kept extra digits in all intermediate answers until the problem is complete.
(a) From conservation of momentum,

(5.00 g)v,, +(10.0 g)v,, = (5.00 g)(20.0 cm/s) + 0
or

Vip + 2V, =20.0 cm/s [1]

Also for an elastic, head-on, collision, we have V;; =V, , = —( Vip = Vy ) ,

which becomes 20.0 cm/s— 0 = —py,+ v, o1

vyr= vyt 20.0 cm/s [2]

Substituting equation [2] into [1] yields V,, + Z(Vlf +20.0 cm/s ) = 20.0 cm/s, or

3v,=-20.0cm/s  and vy =6.67 cm/s

Then [2] gives

Vyr == 6.67 cm/s+20.0 cm/s =|13.3 cm/s

1

(b) KE, = KE,; + KE,; = 5(5.00 x 107 kg)(0.200 m/s)* + 0 = 1.00 x 104 J

KE, = Lmn3, = l(10.0 x 107 kg)(13.3 x 1072 m/s)2 =8.84 x 1075 J, s0
2f 7 2 2f 2 >

KE,, 8.84x1075]

KE, 1.00x10%7J

(@)

my=62.0kg
\ 1050 - 0,=15.0 m/s
my=112kg

v2 Ty my=48.0 kg
i?;; : 2/ vs 0= 12.0 m/s
7
7/
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(b) x-direction: Ipy =2p,; = | mV; cos 0° + m,V, cos105° + m;V; cos 6 = 0|

y-direction: Ipy=2%2p, = | myV, sin 0° + m,V, sin105° + m,V; sin @ = 0|

(©) P = mV; cos0° = (48.0 kg)(12.0 m/s)(1) =

Pae = MoV, c0s105° = (62.0 kg)(15.0 m/s)(-0.259) =

) p, =my,sin0° = (48.0 kg)(12.0 m/s)(0) = [0]

Pay = MV, sin105° = (62.0 kg)(15.0 m/s)(+0.966) = [898 kg - m/s
(e) x-direction: |576 kg -m/s — 241 kg - m/s + (112 kg)v3 cos @ = 0|

y-direction: |O + 898 kg -m/s + (112 kg)v3 sin @ = 0|

-576 kg - 241 kg -
(f)  x-direction: V5 cos @ = 76 kg - m/s + g m/s or Vy cos @ = —2.99 m/s|
112 kg
. —898 kg - -
y-direction: V;sinf = —grn/s or V;sinf = —8.02 m/s|

112 kg

Then, squaring and adding these results, recognizing that cos? @ + sin? 8 = 1, gives

V3 (cos? @+ sin? 6) = (-2.99 mys)’ + (~8.02 m/s)’ and V3 = /733 m2/s? = [8.56 ms

sin @ _
() Yysind Ctang= 22 M5 5 6 0 = tan~! (2.68) + 180° =
V\cosé’ -2.99 m/s

Note that the factor of 180° was included in the last calculation because it was recognized that both the sine
and cosine of angle @ were negative. This meant that g had to be a third quadrant angle. Use of the inverse

tangent function alone yields only the principle angles (—90° < §<+90°) that have the given value for the
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tangent function.

(h) Because the third fragment must have a momentum equal in magnitude and opposite direction to the resultant

of the other two fragments momenta,

\all three pieces must travel in the same plane\.

Conservation of momentum gives

(25.0 g)v,, +(10.0 g)v,, = (25.0 g)(20.0 cm/s) + (10.0 g)(15.0 cm/s)
or

2.50v,, +V,, = 65.0 cm/s

For head-on, elastic collisions, we know that V;; —V,;, = —(Vlf - sz).

Thus,

20.0 cm/s —15.0 em/s= Vv, +V,,  or  V,; =V, +5.00 cm/s

Substituting equation [2] into [1] yields 3.50 vy, = 60.0 cm/s, or vy,=17.1 cm/s|

Equation [2] then gives v, = 17.1 cm/s +5.00 cm/s = 22.1 cm/s.

First, consider conservation of momentum and write
m\Vy; + myVy; = myVyp + myV, ¢
Since m; = m,, this becomes

Vi +Vy = Vit Vs,

For an elastic head-on collision, we also have V;; —V,;, = — (Vlf - sz) , which may be written as

vy,

1

=V = Vi + Ve

Adding Equations [1] and [2] yields

Vor = Vii
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Subtracting Equation [2] from [1] gives
Vlf: Voi [4]

Equations [3] and [4] show us that, under the conditions of equal mass objects striking one another in a head-on,
elastic collision, the two objects simply exchange velocities. Thus, we may write the results of the various collisions

as

(=]

» Vor =
© v - [CT00 ], v, -
© viy = [1.00 mjs], vy, =

@ Vv =

(a) Over a the short time interval of the collision, external forces have no time to impart significant impulse to

the players. The two players move together after the tackle , so the collision is completely inelastic.

_@ vli \ (] +x (east)

Ui A m;=90.0kg v1;=5.00 m/s
m;=95.0kg U9;=3.00 m/s

(b) Dy = Xp, = (ml + mz)vf cos@ = mV,; +0

or

v, cosd = MYy = (90'0 kg)(S.OO m/s) and Vg cos @ = 2.43 m/s
(m +my)  90.0kg + 95.0 kg

Dy =2p,; = (m1 + mz)vf sin@ = 0 + myV,,

giving
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V,sing = Vo _ (95'0 kg)(3.00 m/s) and V,sin@ =1.54 m/s
: (my +my)  90.0kg + 95.0 kg

Therefore,

V2 (sin? 6 + cos? 0) = V2 = (1.54 m/s)” +(2.43 m/s)’

and
V= J8.28 m2/s> = 2.88 m/s
Also,

sin 8
tan 0 = WSO 154w _ 0.633 and 0= tan"1(0.633) = 32.3°
VXCOSH 2.43 m/s

Thus,

|;{f = 2.88 m/s at 32.3° north of east

1 1 1
(¢©) KE, = KE, - KE, = Em,vﬁ. + Emzv%i - E(m1 + my )V}

- %[(90.0 ke)(5.00 m/s)” + (95.0 kg)(3.00 m/S)ZJ - %(185 keg)(2.88 m/s)’ =

The lost kinetic energy is transformed into other forms of energy, such as thermal energy and sound.

6.48 Consider conservation of momentum in the first event (twin A tossing the pack), taking the direction of the velocity

given the backpack as positive. This yields
mAVAf + mpackvpack = (mA + mpack)(o) =0

or

Vu = ~MpackVpack _[iig ii] (+3.00 m/s) = —0.655 m/s and |VAf| =

my
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Conservation of momentum when twin B catches and holds onto the backpack yields
(mB + mPaCk)VBf = mp (0) + MpackVpack

or

mpackvpack (120 kg) (+300 IIl/S)

Vp, = = =10.537 m/s
= 55.0kg + 12.0 kg

My + mpack

Choose the +x-axis to be eastward and the +y-axis northward.

If v; is the initial northward speed of the 3 000-kg car, conservation of momentum in the y direction gives

0+ (3 000 kg)v, = (3 000 kg + 2 000 kg)[ (5.22 m/s)sin 40.0° ]

or

Observe that knowledge of the initial speed of the 2 000-kg car was unnecessary for this solution.

We use conservation of momentum for both northward and eastward components.

For the eastward direction: M(13~0 m/s) =2MV;cos55.0°,

For the northward direction: M V,; = 2M V;sin55.0°

Divide the northward equation by the eastward equation to find

MYy, 2M7 ; sin 55.0°
M(13.02lm/S) "2 cosss0e T (13.0 m/s) tan 55.0°

yieiding

v, = | (13.0 m/s)(%} tan 55.0° =
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Thus, the driver of the north bound car was untruthful.

Choose the x-axis to be along the original line of motion.

(a) From conservation of momentum in the x direction,
m(5.00 m/s) +0 = m(4.33 m/s)cos30.0° + mV,, cos 6
or

Vy,cos@ = 1.25 m/s
Conservation of momentum in the y direction gives
0 = m(4.33 m/s)sin30.0° + mV,,sin @ or Vo, sin@ = —=2.16 m/s 2]

Dividing equation [2] by [1] gives

-2.16
1.25

tan 6 =

=-1.73 and 8 = —60.0°

Then, either [1] or [2] gives v, = 2.50 m/s, so the final velocity of the second ball is

V,, =[2.50 m/s at —60.0°|.

(b) KE, = %mvﬁ. +0 = %m(S.OO m/s)” = m(12.5 m?/s?)

KE,

1
—mvi, + —mV3
2V 2

%m(4.33 m/s)’ + %m(Z.SO m/s)” = m(12.5 m?/s?)
Since KE;= KE;, this is an .

The recoil speed of the subject plus pallet after a heartbeat is

Ax  6.00 x 1075
=22 XM 3755104 mfs
At 0.160 s
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From conservation of momentum, myp — MV =0 + 0, so the mass of blood leaving the heart is

Vv

m = M[K) = (54.0 kg)(%o_;/:n/s} = 4.05 x 102 kg={40.5 g |

Choose the positive direction to be the direction of the truck’s initial velocity.

Apply conservation of momentum to find the velocity of the combined vehicles after collision:
(4 000 kg + 800 kg) ¥ = (4 000 kg)(+8.00 m/s) + (800 kg)(-8.00 m/s)

which yields V'=+ 5.33 m/s.

Use the impulse-momentum theorem, / = F,, (At) =Ap=m (Vf - V,-) , to find the magnitude of the average

force exerted on each driver during the collision.

Truck Driver:

miVy =V, ) ) - 8.
|Fy| = s ek _ (80.0 kg)[5.33 m/s —8.00 m/s| _ ETIRTIEN
At 0.120 s

Car Driver:

mpv, =V, (300 kg)[5.33 m/s - (-8.00 m/s)

|Fy| = car - ~[889x10° N
At 0.120 s

First, we use conservation of mechanical energy to find the speed of m, at B just before collision.

This gives 3+ m Vi + 0 = 0 + mgh;,

or

V2= J2gh = \/2(9.80 m/s?)(5.00 m) = 9.90 m/s

Next, we apply conservation of momentum and knowledge of elastic collisions to find the velocity of m; at B just

after collision.
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From conservation of momentum, with the second object initially at rest, we have

m
mlvlf + mzvzf =mVy; + 0 , or sz = m—(Vli - Vlf) []]
2

For head-on elastic collisions, V;; — V,; = —(Vlf - sz). Since V,; = 0 in this case, this becomes

Uy = Uy + U and combining this with [1] above we obtain

Vig TV = %(Vli - Vlf) or (m1 + mz)Vlf = (’"1 - mz)Vli
2
)
(m, —my) {5.00 = 10.0)
Vlf = Lm} vV = m (990 l’l’l/S) =-330 m/s

Finally, use conservation of mechanical energy for m, after the collision to find the maximum rebound height. This
gives (KE + PE, )f - (KE + PEg)i

or

vl (-3.30 m/s)’

1 .
= Emlvlzf 4+ 0 and h =—L=""""""7_ -[055m

2g  2(9.80 m/s?)

0+ mgh

6.55 Note that the initial velocity of the target particle is zero (that is, v,; = 0).

From conservation of momentum,

mVy; + mV,, = mVy + 0 [1]
For head-on elastic collisions, v;; — vy, = —(Ul o0 f), and with v,; = 0, this gives
Vo =V VY, [2]

Substituting equation [2] into [1] yields

mVy, +m, (Vli + Vlf) = mVy;
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or
(m +m)v :(m —m)V- and V =(u\v, [3]
1 ) Vir 1 2 ) Vi 17 Lml +m2J li
Now, we substitute equation [3] into [2] to obtain
v v +(m1—m2\v v ( 2m, \V (4]
= . _— . or = _— .
2 li Lml +m2J li 2 Lml +m2J li

Equations [3] and [4] can now be used to answer both parts (a) and (b).

(a) Ifm =2.0g,m =10g andv,, = 8.0 m/s, then

8 32
ViP =13 m/s | and v,, = 3 m/s

(b) Ifm =2.0g,m =10g, andv, = 8.0 m/s, we find

8
Vip =|—— m/s|and Vv, = 3 m/s

(c) The final kinetic energy of the 2.0 g particle in each case is

2
Case (a): KE,, = %mlvlzf = %(2.0 x 1073 kg) [g m/s] = 7.1x1073 7

2
1 1
Case (b): KEy; = —mVj, = 5(2'0 x 1073 kg)( —? m/s) = 28x102]

Since the incident kinetic energy is the same in cases (a) and (b), we observe that

}the incident particle loses more kinetic energy in case (a) ‘

6.56 If the pendulum bob barely swings through a complete circle, it arrives at the top of the arc (having risen a vertical
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distance of 2 /) with essentially zero velocity.

From conservation of mechanical energy, we find the minimum velocity of the bob at the bottom of the arc as

(KE + PEg)

bottom

= (KE + PEg)mp,or TMV? =0+ Mg(210). This gives ¥ =24/ g( as the needed

velocity of the bob just after the collision.

Conserving momentum through the collision then gives the minimum initial velocity of the bullet as

m(%]+M(2,/g€)=mV+0 or V= % gl

6.57 We first find the speed of the diver when he reaches the water by using

Vi =Vg +2a, (Av). This becomes

V2 =0 +2(-9.80 m/s*)(-3.0 m), and yields v, = —/59 m/s

The negative sign indicates the downward direction.

Next, we use the impulse-momentum theorem to find the resistive force exerted by the water as the diver comes to

1= R (80) = Ap = (v v} or (P = w)ar = m(v - )
and
(Fyar ~ 784 N)(205) = (50 ke) [0 ~ (59 mys] |

yielding

F,

water

= 784 N + {802\/05_9JN—| 1.1 x10° N (upward)|

6.58 Use conservation of mechanical energy, (KE + PE, ) 5 = (KE + PE, ) , - to find the speed of the bead at point B

just before it collides with the ball. This gives, %m Vi+0=0+mgy,,
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or

v, = 2gv, = \/2(9.80 m/s?)(1.50 m) = 5.42 m/s

Conservation of momentum during the collision gives

(0.400 kg)v,, +(0.600 kg)v,, = (0.400 kg)(5.42 m/s) + 0

or

Vip +1.50v,, = 542 m/s [1]
For a head-on elastic collision, we have Vy; — V,; = —(Vl_,- - Vz_/') , and with V,; = 0, this becomes

Vip =Vor =V or Vi =V — 542 mfs [2]

Substitute equation [2] into [1] to find the speed of the ball just after collision as

2(5.42 m/s
Vyr =542 mfs + 1.50v,, = 5.42 m/s or vy = ( T /_) =434 m/s

Now, we use conservation of the mechanical energy of the ball after collision to find the maximum height the ball

will reach. This gives

vl (434 m)s)

0+ Myap) & Vmax = %mballvgf +0 Or  Vmnax = = —) =10.961m

2g  2(9.80 m/s?

From the instant it is released from rest, at 2.00 m above ground, until just before contact, the ball is a freely falling

body with a, = —g. Its speed just before impact is given by Vﬁ = V%y + 2a, (Ay ) as

v, = N3, + 24, (&) = \/o +2(-9.80 m/s?)(~2.00 m) = 6.26 m/s

and its velocity immediately prior to impact is ;,[ = —6.26 m/s.

After the ball leaves the ground on the rebound (to a height of 1.40 m), it is again in free-fall and

Vﬁ = V(%y + 2a, (AJ’) gives its rebound speed as
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Vo, = 2 = 24, (&) = \J0 - 2(-9.80 m/s?)(+1.40 m) = 5.24 m/s

and its velocity immediately after impact is ;’f = +5.24 m/s.

The impulse-momentum theorem, fav (At) =mv, — m;’i , then gives the average force acting on the ball during

the impact as

Fav _ m(vf - Vi) _ (0.500 kg) |:+5.24 m/s — (—6.26 m/s):| _ 719y or

At 0.080 0 s

6.60 The mass of the third fragment must be

My = Myygrens — My — My = (17— 5.0 — 8.4) x 10727 kg = 3.6 x 1077 kg

Conserving momentum in both the x- and y-directions gives the following:

y-direction: MV, + myVy, + mVy, =0
or

L _m1V1y - vy, i _(5'0 % 1027 kg)(6.0 x 10° m/s) +0 _ _ﬂ X 10° ms
3y m, 3.6 x 10—27 kg 3.6

x-direction: mV,, + myV, +myVy. =0
or

vo = MV F Vo, 0+ (8‘4 x 1077 kg)(4.0 x 10° m/s) 3% e m/s
3 m, 3.6 x 1027 kg 3.6

and

v, = V3 + V3 = \/(—(34/3.6) x 105 mfs)’ + (~(30/3.6) x 105 m/s)” = 1.3 x 10° m/s
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(vy,)
Also, 6 = tan™! Lij +180° = tan~! G—gj +180° = 2.2 x 10? degrees = 220°

6.61

6.62

V3x

Therefore, |;'3 = 1.3 x 10° m/s at 220° counterclockwise from the +x-axis

Note that the factor of 180° was included in the calculation for @because it was recognized that both Vs, and Vs,

were negative. This meant that § had to be a third quadrant angle. Use of the inverse tangent function alone yields

only the principle angles (—90° < 9<+90°) that have the given value for the tangent function.

The sketch at the right gives before and after views of

U1i= Yo U2i= "7

the collision between these two objects. Since the collision m > < m

is elastic, both kinetic energy and momentum must Before impact

be conserved. vy =0

Uy =0
m [y 2

Conservation of Momentum: After impact

MV p + MmNy o = myVy; + myVy,

my (0) + myv = myvy + my (-,

or
v={m 1), 1]
Lmz J 0
Since this is an elastic collision, V; — V,; = — (Vl r sz) , and with the given velocities this becomes
Vo = (Vo) = =(0-v)  or v =2V, [2]

(a) Substituting equation [2] into [1] gives

( )

(b) From equation [2] above, we have .

(a) Let Vy; and V,,; be the velocities of m; and m, just before the collision. Then, using

conservation of mechanical energy: (KE + PEg) = (KE + PE, )0 Jor 3mV? + 0 = 0+ mghy,

i
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gives

v, = —vy = 22k = |[2(9.80 m/s?)(5.00 m) =9.90 m/s

and

" - while v, =

(b) From conservation of momentum:

(2.00 g)v,, +(4.00 g) v,, =(2.00 g)(9.90 m/s) + (4.00 g)(—9.90 m/s)

or
Vi, +(2.00) v, = —9.90 m/s [1]
For an elastic, head-on collision, V}; — V,; =— (Vl f —sz) , giving

+9.90 m/s — (-9.90 m/s) = —v,, +V,, or Vop = Vi, +19.8 mfs 2]

Substituting equation [2] into [1] gives V,, + (2.00)( Vi, +19.8 m/s) = -9.90 m/s,

or

-9.90 m/s — 39.6 m/s
iy = 20 s 2396 mls _

Then, equation [2] yields V,, = —16.5 m/s +19.8 m/s = i

(¢) Applying conservation of energy to each block after the collision gives

1 2 1 v2
Em(O) +mgh_ . = Emvf + mg(O) or b = i

Thus,

v (-16.5 m/s)’

hl/‘ZQZWZ

and
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2 2
hzfz"z_f_ﬁm—nl/s))z

2g  2(9.80 m/s?

Use conservation of mechanical energy to find the speed m; of just before collision. Taking ¥ = O at the

tabletop level, this gives %mlvfi + mg(O) = %ml (0) + mgh, , or

v, = 2gh = \/2(9.80 m/s?)(2.50 m) = 7.00 m/s

Apply conservation of momentum from just before to just after the collision:

(0.500 kg)v,, +(1.00 kg)v,, = (0.500 kg)(7.00 m/s) + 0

or
Vip + 2V, = 7.00 m/s [1]
For a head-on elastic collision, V;; — V,; = —( Vis —sz), and with V,; = 0, this becomes

Vop =Vip + or Vyr =V +7.00 m/s [2]

Substituting equation [2] into [1] yields

Vi + 2( Vi, +7.00 m/s) = 7.00 m/s and Vi = %m/s — =233 m/s

Then, from equation [2], V,, =— 2.33 m/s +7.00 m/s = | 4.67 m/s |.

Apply conservation of mechanical energy to m, after the collision to find the rebound height of this object

v (<233 m/s)’

1 1
Em1(0)+m1ghl’:Emlvlzf+mg(0) or hfz__—z

2g  2(9.80 m/s?)

From Ay = V.7 + %ay 12, with Vo, = 0 the time for m, to reach the floor after it flies horizontally off the

table is
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. Jz(Ay) _ \/2(—2.00 M) o

a, -9.80 m/s?

During this time it travels a horizontal distance

Ax = Vg, = (4.67 m/s)(0.639 5) =

(d) After the 0.500 kg mass comes back down the incline, it flies off the table with a horizontal velocity of 2.33
m/s. The time of the flight to the floor is 0.639 s as found above and the horizontal distance traveled is

Ax =Vt = (2.33 m/s)(0.639s) = |1.49m

6.64 Conservation of the x-component of momentum gives

2

(3m)vy, + 0 = —mvy + (3m)v,  or Vo =3 Vo (1]

Likewise, conservation of the y-component of momentum gives

-mv,, + (3m)V2y =0 and vV, =3V, 2]
Since the collision is elastic, (KE)]- = (KE)i , or

1 1 1 1

Emvlzy + E(3m)(v§x + v§y) = Emvg + E(3m)v5

which reduces to
Vi, + 3(v§x + vgy) =4v3 [3]

Substituting equations [1] and [2] into [3] yields
y

4
ov3, + 3(§v3 + vgyj =4v3 or v, =V0g

(a) From equation [2], the particle of mass m has final speed v, = 3 v,, = |V, \/3 and the particle of mass

3m moves at
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4 2 2
v, = /v%x +V3, = /gvg +§v0 = |V, 3

_ —1(V2y\ _ —1(\’0‘/5/3\ _ -1( 1 \\_ °
(b) 6 =tan k— = tan L—J—tan LEJ_

V,, 2v, /3

6.65 (a) The momentum of the system is initially zero and remains constant throughout the motion. Therefore, when

m, leaves the wedge, we must have 7,Vyeqge + M Vpiock = 0, or

(m ) 0.500
Viedge = Lm_;) Votock = _(WJ (4.00 m/s) = | - 0.667 m/s

(b) Using conservation of energy as the block slides down the wedge, we have

(KE + PE,). = (KE + PE,) o

1

1 1
0+ mlgh = Emlvglock + Em2vgvedge +0

Thus,
1 (m,)
h=—|Vv2 . +|—=|v2
2 g |: block k m, J wedge}
=L (400 m/s) + (ﬂ] (-0.667 m/s)’ | =[0.952 m
19.6 m/s? 0.500
6.66 Choose the positive x-axis in the direction of the initial velocity of the cue ball. Let V,; be the initial speed of the

cue ball, V. be the final speed of the cue ball, V7 be the final speed of the target, and §be the angle the target’s

final velocity makes with the x-axis.

Conservation of momentum in the x-direction, recognizing that all billiard balls have the same mass, gives

mVye cos @ + mv,, c0s30.0° = 0 + mv,, or Vg cos8 =V, — V. cos30.0° [1]

To conserve momentum in the y-direction, recognize that the y-components of the final velocities of the target and

cue balls must have opposite signs. Thus, if the cue ball scatters at 30.0° below the x-axis, the target ball must
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scatter at angle @above the x-axis. The conservation equation for momentum in the y-direction is:
mVyy sin 6 — mv, sin30.0° =0+ 0 or Viy sin @ = Ver sin 30.0° [2]
Since this is an elastic collision, kinetic energy is conserved, giving
mv2 = —mv or Vi = Vi -V (3]
(b) To solve, square equations [1] and [2] and add the results to obtain

V3, (cos? 0 + sin? 0) = V2 — 2v,,v,, c0s 30.0° + V2, (cos? 30.0° + sin® 30.0°)

or Vi = Vg — 2V,V,, c0s30.0° + Vg

Now, substitute this result into equation [3] to get

W~ 2V,V, c0530.0° + V2 = W~V or 2V (Vy =V €0830.0°) = 0

Since Vs # 0, it is necessary that V,, = V,; c0s30.0° = (4.00 m/s) c0s30.0° = .
Then, equation 3] yields V7 = «,VEI- - ng , or

Vi = (400 m/s)’ — (3.46 m/s)’ =

(a) With the results found above, equation [2] gives

(v ) (3.46 m/s)

sin g = L Jsin30.0° = LZ.OO m/sJ sin 30.0° = 0.866, or 8 = 60.0°

Viy

Thus, the angle between the velocity vectors after collision is

¢ = 60.0° + 30.0° =

6.67 (a)  Use conservation of the horizontal
component of momentum from just

before to just after the cannon firing.

(pr )f = (pr)i gives

Mgen (Vshe]1 cos 45.0°) +m v =0

cannon " recoil >

or
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( Mshell

L mcannon

(200 k
LﬁJ 125 m/s)cos45.0° =

V

recoil —

J Ve €0s45.0°

(b) Use conservation of mechanical energy for the cannon-spring system from right after the cannon is fired to

the instant when the cannon comes to rest.

(KE + PE, + PE, )f = (KE + PE, + PE,)

i

1
0+0+2kxmax:—m V2

2 cannon ' recoi

g +0+0

[ Meamon Veon (5 000 kg)(-3.54 m/s)’
S k \/ 200 x 10* N/m

©  |Fae| = k¥ = (2.00 x 104 N/m)(1.77 m) =[3.54 x 10% N]

(d) No. The rail exerts a vertical external force (the normal force) on the cannon and prevents it from recoiling
vertically. Momentum is not conserved in the vertical direction. The spring does not have time to stretch
during the cannon firing. Thus, no external horizontal force is exerted on the system (cannon plus shell) from

just before to just after firing. Momentum is conserved in the horizontal direction during this interval.

Observe from Figure P6.68, the platform exerts 0.40 7
a 0.60-kN to support the weight of the standing 0.30
athlete prior to # = 0.00 s. From this, we determine 0.20 -
the mass of the athlete:
0.10
t(s)
w _0.60kN _ 600N 0.00 '
m=— = 61 kg —0.50 0.00 0.50 1.0
g g 938 m/s2

For the interval # = 0.00 sto # = 1.0 s, we subtract the 0.60-kN used to counterbalance the weight to get the net
upward force exerted on the athlete by the platform during the jump. The result is shown in the force versus time
graph at the right. The net impulse imparted to the athlete is given by the area under this graph. Note that this area

can be broken into two triangular areas plus a rectangular area.

The net upward impulse is then
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I= %(0.50 s)(100 N) + %(0.50 s)(300 N) + (0.50 N)(100 N) = 150 N - s

The upward velocity V; of the athlete as he lifts off of the platform (at # = 1.0 s) is found from

1 1 .
I=Ap=mv,—mvy=mv, -0 = Vi:—:M:ZSm/S
m 61 kg

The height of the jump can then be found from V7 = Vi + 2a,Ay (with V; = 0)to be

vi-v2 0 - (2.5 mfs)

) 2(—9.8 m/sz)

Let particle 1 be the neutron and particle 2 be the carbon nucleus. Then, we are given that m, =12m, .
(a) From conservation of momentum ",V,, + MV, =mVy; + 0,

Since m, =12m,, this reduces to

12V, + v, =V, [1]
For a head-on elastic collision

Vij =V = (Vlf - VZ.I’)
Since V,; = 0 this becomes

Vay =Vy; + Vi (2]

Substitute equation [2] into [1] to obtain 12 (Vli + Vlf) +Vyp =V, or
13v,, = =11v;; and Vi =_Evli

Then, equation [2] yields

Voy = 3 Vi
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The initial kinetic energy of the neutron is KE|; = % mV , and the final kinetic energy of the carbon nucleus

is

1 1 4 48 (1 48
KE,, = —mV2, = —(12m [—v2.J=—[—mv2.]=—KE.
A 2( ) 169 " 1692 "1l 169 "

KE,, ~ ﬁ
KE,; 169

The fraction of kinetic energy transferred is =10.28].

(b) If KE, = 1.6 x 10713 ] then
4 4
KE,, = —8KEU = —8(1.6 x 10713 ) = [ 4.5 x 10714
169 169

The remaining energy 1.6 x 10713 J — 4.5 x107* J=| 1.1 x 10713 J | stays with the neutron.

6.70 (a) T?IB
ny,
2 B
4 2B o
M |
ﬁ
Fpy

LMQ leg’

(b) From Newton’s third law, the force F 34 exerted by B on A is at each instant equal in magnitude and opposite

in direction to the force F 4p €xerted by 4 on B.

(c) There are no horizontal external forces acting on system C which consists of both blocks. The forces F BA

and F . are internal forces exerted on one part of system C by another part of system C.

Thus,

. Abc _
EFexternal = At =0 =

This gives
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(Bc), = (Bc), = (Ba), + (Bs), or (M +2M)V = M(+v) +0
so the velocity of the combined blocks after collision is ¥ = +V/3.

The change in momentum of 4 is then

88, = (Ba), ~(B2), = My — v = m[ ¥ —v) =

and the change in momentum for B is:

Apy = (f)g)f - (f’g)i =2MV -0 = 2M(+TV) = |+ 2Mv/3

(&)  AKE = (KE), - [(KE,) + (KE,)] = %(3M)[§]2 —[AMv? + 0] = -1

i

Thus, | kinetic energy is not conserved in this inelastic collision |

6.71 (a) The owner’s

claim should be denied |. Immediately prior to impact, the total momentum of the two-car

system had a northward component and an eastward component. Thus, after impact, the wreckage moved in a

northeasterly direction and could not possibly have damaged the owner’s property on the southeast corner.

(b) From conservation of momentum:

(Px )after - (px )before = (m1 + mZ)Vx =m (Vli )x ) (V2i )x >

or
Lo (vii), +my(vy), (1300 kg)(30.0 km/h)+0 16.3 km/h
x = m, + m © 1300kg+1100kg
(py )after - (py )before = (ml + mz)Vy =M (Vli )y T (Vzi )y
or

m (vir), +m (Vai), 0+ (1100 kg)(20.0 km/h)
m, + m, ~ 1300 kg +1100 kg

Vy=

=9.17 km/h

Thus, the velocity of the wreckage immediately after impact is
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v=[2+v2 =187 km/h and 6 = tan! H—yj = tan~' (0.564) = 29.4°

X

or vV = | 18.7 km/h at 29.4° north of east, consistent with part (a) |

6.72 Ignoring the force of gravity during the brief collision time, we use the conservation of momentum to obtain:
(0.45 kg)v,, + (60 kg)v,, = (0.45kg)(-25 m/s) + (60 kg)(4.0 m/s)
or
V, =38 m/s —(7.5x107)v,, [1]
Also, elastic collision = Vpr =V, = —(Vbi - vp[) = —(—25 m/s — 4.0 m/s), or
Ve =29 mfs +v,, [2]
Substituting equation [1] into [2] yields
S
The average acceleration of the ball during the collision is
yy = beA_tVbi = > n;/g;g;i:m/s) = | 2.9 x 103 m/s? |
6.73 (a) The speed V; of both balls just before the basketball reaches the ground may be found from
vi = vgy +2a,Ay as
v, = V8, + 20,80 = [0+ 2(-9.80 m/s?)(~1.20 ms) =
(b

Immediately after the basketball rebounds from the floor, it and the tennis ball meet in an elastic collision.

The velocities of the two balls just before collision are:

For the tennis ball: v, = -V, = —4.85 m/s

For the basketball: V,, = +V; = +4.85 m/s
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We determine the velocity of the tennis ball immediately after this elastic collision as follows:

Momentum conservation gives
(57.0 g)v,, + (590 g)v,, = (57.0 g)(—4.85 m/s) + (590 g)(+4.85 m/s)
which reduces to

V,, =438 m/s — (9.66 x 102)v,,

Elastic Collision =  V|; — V,; = —(Vlf - sz) or Vip = Vo = Vy

1

+Vy,
s0
Vij = Vo, —(—4.85 m/s) +4.85 m/s  and Vip = Vy, +9.70 m/s
Substituting equation [1] into [2] gives (1 + 9.66 x 1072) v, = 4.38 m/s + 9.70 m/s  or
Vi, = +12.84 mfs

The vertical displacement of the tennis ball during its rebound is given by Vﬁ = V(%y + 2a,Ay as

v2-v3,  0-(12.84 m/s)

_ 7 _ _
R 2(-9.80 m/s?) =[836m]

y

The woman starts from rest (Yo, = 0) and drops freely with @, = —& for 2.00 m before the impact with the

toboggan. Then, V3; = Vg, + 2a,(Ay) gives her speed just before impact as

vy = V3, + 24, (Ay) = [0 + 2(-9.80 m/s?)(-2.00 m) = 6.26 m/s

The sketches at the right show the
M} = Mman+ Mighogean=90.0 kg

situation just before and just after My = Myoman=55.0 kg
the woman’s impact with the / vu=800m/s /
02iY30.0°,/ v, =626 m/s /
/ /

toboggan. Since no external forces
impart any significant impulse

directed parallel to the incline

(+x-direction) to the system

consisting of man, woman, and 30.0°

toboggan during the very brief Just before impact Just after impact

duration of the impact, we will consider the total momentum parallel to the incline to be conserved. That is,

(ml + mz)vf = mV,; + m, (V2i )x = mV,; + m,V,,; sin30.0°
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or the speed of the system immediately after impact is

myV,, + myV,, 5in30.0°  (90.0 kg)(8.00 m/s) + (55.0 kg)(6.26 m/s)sin30.0°

vV, = = =16.15 m/s
4 90.0 kg + 55.0 kg 615 m/s|

nmy +m2

First consider the motion of the block and embedded bullet from immediately after impact until the block comes to

rest after sliding distance d across the horizontal table. During this time, a kinetic friction force
S = mn = (M + m) g, directed opposite to the motion, acts on the block. The net work done on the (block

plus bullet) during this time is

net

} o 1
Wy = (f c0s180°)d = KE, — KE, = 0_5(M+m),,z

so the speed, V, of the block and embedded bullet immediately after impact is

7 2p ( M) gd
V:m:\/ﬂ(m)gzm

Now, make use of conservation of momentum from just before to just after impact to obtain

DPxi = Dy = mv, = (M+ m)V = (M+ m)J2,L1kgd

and the initial velocity of the bullet was

M+ m
Vo:( p jxlzﬂkgd

(a) Apply conservation of momentum in the vertical direction to the squid-water system from the instant before

to the instant after the water is ejected. This gives

m

(m) (0.30 ke
m+ v, = (s m)(0)or v = |, = ‘(8.533(5) éJ(—zo ms) =

(b)  Apply conservation of mechanical energy to the squid from the instant after the water is ejected until the

squid reaches maximum height to find:
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v2 (7.1 m/s)2

677  (a)

At rest

Just before collision Just after collision

The situations just before and just after the collision are shown above. Conserving momentum in both the x- and y-

directions gives

(£,), = (py), = mvipsins® —my, sing=0 o MV, sin g = myy, ; sin 53° 1]

(px )/_ = (px )i = mV,;c0s53° + myV,, cos ¢ = mVy; + 0,

or

MV, ; COS ¢ = myVy; — myV, , cos 53° [2]
Dividing equation [1] by [2] yields

_ Vysin53° (1.0 m/s)sin53° B —
tan ¢ = V) — Vi €08 53° B (2.0 m/s) — (1.0 m/s)cos 53° =037 o

Equation [1] then gives

mV,,sin53°  (0.20 kg)(1.0 m/s)sin53° B

Vo = m, sin ¢ - (0.30 kg) sin 30° B

(b) The fraction of the incident kinetic energy lost in this collision is

|AKE| _ KE, - KE,  KE,  1(020kg)(L0 m/s)’ +1(0.30 kg)(1.1 m/s)’
KE, KE, KE, 1(0.20 kg)(2.0 m/s)’
|AKE|
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6.78 At rest
At rest l«——7.5m—> L
120g ¥ v
®—> 100g 112<2g > 112 g
Immediately before impact Immediately after impact At the end

Using the work—energy theorem from immediately after impact to the end gives
Wy = fi (cos180°)s = KE,y — KE

after

or

—[,uk(M+m)g]s:0—%(M+m)V2 and V=y2ugs

Then, using conservation of momentum from immediately before to immediately after impact gives

mV+O=(M+m)V,0r

v = [M; m] V= [Mn: mj J2ugs = [ 12 g}\/2(0.650)(9.80 m/s2)(7.5 m)

12.0¢g

Page 6.47



