
PROBLEM SOLUTIONS 

5.1 If the weights are to move at constant velocity, the net force on them must be zero. Thus, the force exerted 

on the weights is upward, parallel to the displacement, with magnitude 350 N. The work done by this 

force is 

     cos 350 N cos 0 2.00 m 700 JW F s  

5.2 (a) We assume the object moved upward with constant speed, so the kinetic energy did not change. 

Then, the 

work–energy theorem gives the work done on the object by the lifter as 

0 ( )nc f iW KE PE mgy mgy mg y , or 

   2 2281.5 kg 9.80 m s 17.1 cm 1 m 10  cm 472 JncW  

(b) If the object moved upward at constant speed, the net force acting on it was zero. Therefore, the 

magnitude of  

the upward force applied by the lifter must have been equal to the weight of the object 

     2 3281.5 kg 9.80 m s 2.76 10  N 2.76 kNF mg  

5.3 Assuming the mass is lifted at constant velocity, the total upward force exerted by the two men equals the 

weight of the mass: 2 3
total 653.2 kg 9.80 m s 6.40 10  NF mg . They exert this upward 

force through a total upward displacement of 96 inches or 8 feet (4 inches per lift for each of 24 lifts). 

Thus, the total work done during the upward movements of the 24 lifts is 

  5 4
total

1 m
cos cos 0 6.40 10  N cos 0 8 ft 2 10  J

3.281 ft
W F x F x  

5.4 (a) The 35 N force applied by the shopper makes a 25° angle with the displacement of the cart 

(horizontal). The 

work done on the cart by the shopper is then 

    3
shopper cos 35 N cos 25 50.0 m 1.6 10  JW F x  

 (b) Since the speed of the cart is constant, f iKE KE  and net 0 .W KE  



 (c) Since the cart continues to move at constant speed, the net work done on the cart in the second aisle 

is again 

zero. With both the net work and the work done by friction unchanged, the work done by the 

shopper shopper net fricW W W  is also unchanged. However, the shopper now pushes 

horizontally on the cart, making shopper shopper( cos 0) =  smaller  than beforeF W x W x  

when the force was shopper cos 35F W x  

5.5 (a) The gravitational force acting on the object is 

    25.00 kg 9.80 m s 49.0 Nw mg  

  and the work done by this force is 

    g g f i i fW PE mg y y w y y  

  or 

  sin 30.0 49.0 N 2.50 m sin 30.0 61.3 JgW w L  

 (b) The normal force exerted on the block by the incline is cos 30.0n mg , so the friction force is 

    0.436 49.0 N cos 30.0 18.5 Nk kf n  

 This force is directed opposite to the displacement (that is  = 180°), and the work it does is  

   cos 18.5 N cos180 2.50 m 46.3 Jf kW f L  

(c) Since the normal force is perpendicular to the displacement, the work done by the normal force is.  

 cos 90.0 0nW n L  

(d) If a shorter ramp is used to increase the angle of inclination while maintaining the same vertical 

displacement f iy y , the work done by gravity will not change, the work done by the friction 



force will decrease (because the normal force, and hence the friction force, will decrease and also 

because the ramp length L decreases), and the work done by the normal force remains zero (because 

the normal force remains perpendicular to the displacement). 

5.6 (a) cos 150 N 6.00 m cos 0 900 JFW F x  

 (b) Since the crate moves at constant velocity, Thus, 0.x ya a  

  0    150 Nx kF f F  

  Also, 

  20    40.0 kg 9.80 m s 392 NyF n mg  

  so 

  
150 N

0.383
392 N

k
k

f

n
 

5.7 (a) sin 0yF F n mg  

  sinn mg F  

  cos 0x kF F n  

   
cos

k

F
n  

   
cos

     sin
k

F
mg F  

  

20.500 18.0 kg 9.80 m s
= = = 79.4 N

sin cos 0.500 sin 20.0 cos 20.0

k

k

mg
F  



 (b) 3cos 79.4 N cos 20.0º 20.0 m 1.49 10  J 1.49 kJFW F s  

 (c) cos 74.6 Nkf F  

  3
  = cos = 74.6 N cos180 º 20.0 m 1.49 10  J 1.49 kJf kW f s  

5.8 (a) cos 16.0 N cos 25.0° 2 .20 mFW F s  

  31.9 JFW  

 (b) cos 90 0nW n s  

 (c) cos 90 0gW mg s  

 (d) net 31.9 J 0 0 31.9 JF n gW W W W  

5.9 (a) The work–energy theorem, net f iW KE KE , gives 

   3 2
1

5000 J 2 .50 10  kg 0
2

v , or  2.00 m sv  

 (b) cos cos 0 25.0 m 5000 JW F s F , so 200 NF  

5.10 Requiring that ping pong bowlingKE KE  with 1 2
2

KE mv , we have 

   
23 2

1 1
2 .45 10  kg 7.00 kg 3.00 m s

2 2
v  

 giving 160 m sv . 

5.11 (a) 1 2
2i iKE mv  where 

2 22 2 2 2 2
0 0 6.00 m s 2.00 m s 40.0 m si x yv v v , 

  giving  1 2 2
2

5.75 kg 40.0 m s 115 JiKE . 

 (b) 
1 2
2f fKE mv  where 

2 22 2 2 2 28.50 m s 5.00 m s 97.3 m sf x yv v v , 



  so , 1 2 2
2

5.75 kg 97.3 m s 280 JfKE , and the change in kinetic energy has been 

  280 J 115 J 165 Jf iKE KE  

5.12 (a) Since the applied force is horizontal, it is in the direction of the displacement giving 0 . The 

work done by this force is then 

  
0 0 0 0cos cos 0FW F x F x F x  

  and 

  0

0

350 J
29.2 N

12.0 m

FW
F

x
 

 (b) Since the crate originally had zero acceleration, the original applied force was just enough to offset 

the retarding friction force. Therefore, when the applied force is increased, it has a magnitude 

greater than the friction force. This gives the crate a resultant force (and hence an acceleration) in 

the direction of motion, meaning the speed of the crate will increase with time . 

 (c) If the applied force is made smaller than F0, the magnitude of the friction force will be greater than 

that of the 

applied force. This means the crate has a resultant force, and acceleration, in the direction of the 

friction force (opposite to the direction of motion). 

The crate will now slow down and come to rest . 

5.13 (a) We use the work–energy theorem to find the work. 

   
22 2 2

1 1 1
0 70 kg 4.0 m s 5.6 10  J

2 2 2
f iW KE m mv v  

 (b) cos cos180k k kW F s f s n s mg s , 

  so 

  

2

2

5.6 10  J
1.2 m

0.70 70 kg 9.80 m sk

W
s

mg
 



5.14 At the top of the arc, 0yv , and 0 0 cos 30.0 34.6 m sx xv v v . 

 Therefore, 
22 2 2 34.6 m sx yv v v , and 

   
22

1 1
0.150 kg 34.6 m s 90.0 J

2 2
KE mv  

5.15 (a) As the bullet penetrates the tree trunk, the only force doing work on it is the force of resistance 

exerted by the trunk. This force is directed opposite to the displacement, so the work done is 

net ( cos180 ) f iW f x KE KE , and the magnitude of the force is 

    

23

4

2

1
0 7.80 10  kg 575 m s

2 2.34 10  N
cos180 5.50 10  m

f iKE KE
f

x
 

 (b) If the friction force is constant, the bullet will have a constant acceleration and its average velocity 

while 

stopping is 2f iv v v . The time required to stop is then 

    
2

4
2 5.50 10  m2

1.91 10  s
0 575 m sf i

xx
t

v vv
 

5.16 (a) 
22

1 1
0.60 kg 2.0 m s 1.2 J

2 2
A AKE mv  

 (b) 1 2
2B BKE mv , so 

  
2 2 7.5 J

5.0 m s
0.60 kg

B
B

KE

m
 

 (c) net 7.5 1.2  J 6.3 JB AW KE KE KE  

5.17 net road 1 resist 2cos cos 1 000 N cos 0 950 N cos180W F s F s s s  

 3
net 1 000 N 950 N 20 m 1.0 10  JW  



 Also, 2
net

1
0

2
f iW KE KE mv , so 

  
3

net
2 1.0 10  J2

1.0 m s
2000 kg

W

m
v  

5.18 The initial kinetic energy of the sled is 

   
22

1 1
10 kg 2.0 m s 20 J

2 2
i iKE mv  

 and the friction force is 0.10 98 N 9.8 Nk k kf n mg . 

 cos180net k f iW f s KE KE , so 
0 20 J

2.0 m
cos180 9.8 N

i

k

KE
s

f
 

5.19 With only a conservative force acting on the falling ball, 

 g g
i f

KE PE KE PE     or  22
1 1

2 2
i i f hm mgy m mgyv v  

 Applying this to the motion of the ball gives 1 2
2

0 0i fmgy mv  

 or  

22

2

9.0 m s
4.1 m

2 2 9.80 m s

f

iy
g

v
 

5.20 (a) The force stretching the spring is the weight of the suspended object. Therefore, the force constant 

of the spring is 

    
2

2
2

2.50 kg 9.80 m s
8.88 10  N s

2.76 10  m

gF mg
k

x x
 

 (b) If a 1.25-kg block replaces the original 2.50-kg suspended object, the force applied to the spring 

(weight of the suspended object) will be one-half the original stretching force. Since, for a spring 

obeying Hooke’s law, the elongation is directly proportional to the stretching force, the amount the 

spring stretches now is 



    
2 1

1 1
2.76 cm 1.38 cm

2 2
x x  

 (c) The work an external agent must do on the initially unstretched spring to produce an elongation xf is 

equal to 

the potential energy stored in the spring at this elongation 

   
2

2 2 2
done 
spring

1 1
0 8.88 10  N m 8.00 10  m 2.84 J

2 2
on s s ff i

W PE PE kx  

5.21 The magnitude of the force a spring must exert on the 3.65-g object to give that object an acceleration of 

20.500 4.90 m sa g  is given by Newton’s second law as 

  3 2 23.65 10  kg 4.90 m s 1.79 10  NF ma  

 Then, by Newton’s third law, this object exerts an oppositely directed force of equal magnitude in the on 

the spring. If this reaction force is to stretch the spring 0.350 cm, the required force constant of the spring 

is 

  
2 2

-3

1.79 10  N 1.79 10  N
5.11 N m

0.350 cm 3.50 10  m

F
k

x
 

5.22 (a) While the athlete is in the air, the interacting objects are the athlete and Earth. They interact through 

the gravitation force that one exerts on the other. 

(b) If the athlete leaves the trampoline (at the y = 0 level) with an initial speed of, 9.0 m siv  her 

initial kinetic energy is 

   
22 3

1 1
60.0 kg 9.0 m s 2.4 10  J

2 2
i iKE mv  

  and her gravitational potential energy is 0 0 Jg i
i

PE mgy mg . 

(c) When the athlete is at maximum height, she is momentarily at rest and 0 JfKE  Because the 

only force acting on the athlete during her flight is the conservative gravitation force, her total 

energy (kinetic plus potential) remains constant. Thus, the decrease in her kinetic energy as she goes 



from the launch point where 0gPE  to maximum height is matched by an equal size increase 

in the gravitational potential energy. 

                  or     g f i f i f i i fPE KE PE PE KE KE PE PE KE KE  

  and 

    3 30 2.4 10  J 0 2.4 10  JfPE  

(d) The statement that the athlete’s total energy is conserved is summarized by the equation 

0KE PE  or 2 2 1 1KE PE KE PE . In terms of mass, speed, and height, this becomes 

1 12 2
2 2 1 12 2

m mgy m mgyv v . Solving for the final height gives 

  
2 2

1 1 2

2

1 1

2 2
mgy m m

y
mg

v v
  or 

2 2
1 2

2 1
2

y y
g

v v
 

  The given numeric values for this case are 1 10,  9.0 m sy  (at the trampoline level) and 

v2 0 at maximum height . The maximum height attained is then 

   

22 2
1 2

2 1 2

9.0 m s 0
0 4.1 m

2 2 9.80 m s
y y

g

v v
 

 (e) Solving the energy conservation equation given in part (d) for the final speed gives 

  2 2
2 1 1 2

2 1

2
m mgy mgy

m
v v    or  2

2 1 1 22g y yv v  

 With 1 0y , 1 9.0 m sv  and 2 max 2 4.1 m 2y y , the speed at half the maximum height 

is given as 

    
2 2

2

4.1 m
9.0 m s 2 9.80 m s 0 6.4 m s

2
v  

5.23 The work the beam does on the pile driver is given by  



   cos180 0.180 mncW F x F  

 Here, the factor cos180  is included because the force F exerted on the driver by the beam is directed 

upward, but the 18.0 cm 0.180 mx  displacement undergone by the driver while in contact with 

the beam is directed downward. 

 From the work–energy theorem, this work can also be expressed as 

    2 2
1

2
nc f i f i f i f iW KE KE PE PE m mg y yv v  

 Choosing y = 0 at the level where the pile driver first contacts the top of the beam, the driver starts from 

rest 0iv  at 7.50 miy  and comes to rest again at 0fv  at 0.180 mfy . Therefore, we 

have 

  2
1

0.180 m 0 0 2 300 kg 9.80 m s 0.180 m 7.50 m
2

F m  

 yielding  
5

5
1.73 10  J

9.62 10  N  directed upward
0.180 m

F  

5.24 When the child swings at the end of the ropes, she follows 

a circular path of radius r = 1.75 as shown at the right. If we 

choose y = 0 at the level of the child’s lowest position on this 

path, then her y-coordinate when the rope is at  angle with the 

vertical is cos 1 cosy r r r . Thus, her gravitational 

potential energy at this position is 

   1 cos 1 cosgPE mgy mgr wr  

 (a) When the ropes are horizontal, 90.0 , and 

   23.50 10  N 1.75 m 1 cos 90.0 613 JgPE  

 (b) When 30.0 , 23.50 10  N 1.75 m 1 cos 30.0 82.1 JgPE . 

 (c) At the bottom of the arc, 0,  cos = cos0° =1,y  and 0gPE . 



5.25 While the motorcycle is in the air, only the conservative gravitational force acts on cycle and rider. Thus, 

1 12 2
2 2f f i im mgy m mgyv v , which gives 

  

2 222

2

35.0 m s 33.0 m s
6.94 m

2 2 9.80 m s

i f

f iy y y
g

v v
 

 Note that this answer gives the maximum height of the cycle above the end of the ramp, which is an 

unknown distance above the ground. 

5.26 (a) When equilibrium is reached, the total spring force supporting the load equals the weight of the 

load, or , total , leaf , helper loads s sF F F w . Let  and hk k represent the spring constants of the 

leaf spring and the helper spring, respectively. Then, if x  is the distance the leaf spring is 

compressed, the condition for equilibrium becomes 

     0 loadhk x k x y w  

   or 

   
5 5

load 0

5 5

5.00 10  N 3.60 10  N m 0.500 m
0.768 m

5.25 10  N m 3.60 10  N m

h

h

w k y
x

k k
 

(b) The work done compressing the springs equals the total elastic potential energy at equilibrium. 

Thus,  

21 12
2 2

0.500 mhW k x k x  

  or 

  
2 215 5 5

2

1
5.25 10  N m 0.768 m 3.60 10  N m 0.268 m 1.68 10  J

2
W  

5.27 The total work done by the two bicep muscles as they contract is 

    2
biceps av2 2 800 N 0.075 m 1.2 10  JW F x  

 The total work done on the body as it is lifted 40 cm during a chin-up is 

    2 2
chin-up 75 kg 9.80 m s 0.40 m 2.9 10  JW mgh  

 Since chin-up bicepsW W , it is clear that addition muscles must be involved . 



5.28 Applying nc f i
W KE PE KE PE  to the jump of the “original” flea gives 

  0 0 0m fF d mgy     or  
m

f

F d
y

mg
 

 where Fm is the force exerted by the muscle and d is the length of contraction. 

 If we scale the flea by a factor f, the muscle force increases by 2f and the length of contraction increases 

by f. The mass, being proportional to the volume which increases by 3f , will also increase by 3f . Putting 

these factors into our expression for fy  gives 

    
2

super 3
flea

0.5 m
m m

f f

f F fd F d
y y

mgf m g
 

 so the “super flea” cannot jump any higher! 

 This analysis is used to argue that most animals should be able to jump to approximately the same height 

(~0.5 m). Data on mammals from elephants to shrews tend to support this. 

5.29 (a) Taking y = 0, and hence 0gPE mgy  at ground level, the initial total mechanical energy of the 

project tile is  

   

2
total

2
2 2 5

1

2
1

50.0 kg 1.20 10  m s 50.0 kg 9.80 m s 142 m 4.30 10  J
2

i i i ii
E KE PE m mgyv

 

 (b) The work done on the projectile is equal to the change in its total mechanical energy. 

   

2 2
rise

2 2 2

4

1

2
1

50.0 kg 85.0 m s 120 m s 50.0 kg 9.80 m s 427 m 142 m
2

3.97 10  J

nc f f i i f i f iW KE PE KE PE m mg y yv v

 

 (c) If, during the descent from the maximum height to the ground, air resistance does one and a half 

times as much work on the projectile as it did while the projectile was rising to the top of the arc, the 

total work done for the entire trip will be 

  
total rise descent rise rise

4 4

1.50

2.50 3.97 10  J 9.93 10  J

nc nc nc nc ncW W W W W
 



  Then, applying the work–energy theorem to the entire flight of the projectile gives 

   2 2
just before

at launchtotal
hitting ground

1 1

2 2
nc f f i iW KE PE KE PE m mgy m mgyv v  

  and the speed of the projectile just before hitting the ground is 

   

total 2

4
2 2

2
2

2 9.93 10  J
120 m s 2 9.80 m s 142 m 0 115 m s

50.0 kg

nc

f i i f

W
g y y

m
v v

 

5.30 (a) The work done by the gravitational force equals the decrease in the gravitational potential energy, or 

    g f i i f i fW PE PE PE PE mg y y mgh  

 (b) The change in kinetic energy is equal to the net work done on the projectile, which in the absence of 

air resistance is just that done by the gravitational force. Thus, 

    net           gW W KE KE mgh  

 (c) f iKE KE KE mgh   so  2
0

1

2
f iKE KE mgh m mghv  

 (d) No. None of the calculations in Parts (a), (b), and (c) involve the initial angle. 

5.31 (a) The system will consist of the mass, the spring, and Earth. The parts of this system interact via the 

spring force, the gravitational force, and a normal force. 

(b) The points of interest are where the mass is released from rest (at x = 6.00 cm) and the equilibrium 

point, x = 0.  

 (c) The energy stored in the spring is the elastic potential energy, 1 2
2sPE kx . 

  At x = 6.00 cm, 

    
2

2
1

850 N m 6.00 10  m 1.53 J
2

sPE  

  and at the equilibrium position , (xf = 0) 



    
21

0 0
2

sPE k  

 (c) The only force doing work on the mass is the conservative spring force (the normal force and the 

gravitational force are both perpendicular to the motion). Thus, the total mechanical energy of the 

mass will be constant. Because we may choose y = 0, and hence PEg = 0, at the level of the 

horizontal surface, the energy conservation equation becomes 

    f s i sf i
KE PE KE PE   or  2 2 2 2

1 1 1 1

2 2 2 2
f f i im kx m kxv v  

  and solving for the final speed gives 

    22 2
f i i f

k
x x

m
v v  

 If the final position is the equilibrium position 0fx  and the object starts from rest 0iv  at, 

6.00 cmix  the final speed is 

    
2

2 2 2
850 N m

0 6.00 10  m 0 3.06 m 1.75 m s
1.00 kg

f sv  

(c) When the object is halfway between the release point and the equilibrium position, we have  

0,  6.00 cm, and 3.00 cmi i fx xv , giving 

    
2 2

2 2
850 N m

0 6.00 10  m 3.00 10  m 1.51 m s
1.00 kg

fv  

 This is not half of the speed at equilibrium because the equation for final speed is not a linear 

function of position. 

5.32 Using conservation of mechanical energy, we have 

    2 2
1 1

0
2 2

f f im mgy mv v  

 or 



  

2 222

2

10 m s 1.0 m s
5.1 m

2 2 9.80 m s

i f

fy
g

v v
 

5.33 Since no nonconservative forces do work, we use conservation of mechanical energy, with the zero of 

potential energy selected at the level of the base of the hill. Then, 1 12 2
2 2f f i im mgy m mgyv v  with 

0fy  yields 

  

22 2

2

3.00 m s 0
0.459 m

2 2 9.80 m s

f i

iy
g

v v
 

 Note that this result is independent of the mass of the child and sled. 

5.34 (a) The distance the spring is stretched is 0 41.5 cm 35.0 cm 6.5 cmx . Since the 

object hangs in equilibrium on the end of the spring, the spring exerts an upward force of magnitude 

Fs = mg N on the suspended object. Then, Hooke’s law gives the spring constant as 

   
2

3
2

0

7.50 kg 9.80 m s
1.1 10  N m 1.1 kN m

6.5 10  m

sF mg
k

x
 

(b) Consider one person (say the one holding the left end of the spring) to simply hold that end of the 

spring in 

position while the person on the other end stretches it. The spring is then stretched a distance of 

0 0.350 mx  by a stretching force of magnitude Fs = 190. From Hooke’s law, 

sx F k , we have 

  
3

190 N
0.350 m 0.17 m

1.1 10  N m
   and  0.17 m + 0.350 m 0.52 m  

5.35 (a) On a frictionless track, no external forces do work on the system consisting of the block and the 

spring as the 

spring is being compressed. Thus, the total mechanical energy of the system is constant, or 

f g s i g sf if i
KE PE PE KE PE PE . Because the track is horizontal, the 

gravitational potential energy when the mass comes to rest is the same as just before it made contact 

with the spring, or g g
f i

PE PE . This gives 



     2 2 2 2
1 1 1 1

2 2 2 2
f f i im kx m kxv v  

  Since 0fv  (the block comes to rest) and xi = 0 (the spring is initially undistorted), 

    
0.250 kg

1.50 m s 0.350 m
4.60 N m

f i

m
x

k
v  

(b) If the track was not frictionless, some of the original kinetic energy would be spent overcoming 

friction between the mass and track. This would mean that less energy would be stored as elastic 

potential energy in the spring when the mass came to rest. Therefore, the maximum compression of 

the spring would be less in this case. 

5.36 (a) From conservation of mechanical energy, 

   2 2
1 1

2 2
B B A Am mgy m mgyv v  

  or 

   

2

2

2

0 2 9.80 m s 1.80 m 5.94 m s

B A A Bg y yv v

 

  Similarly, 

   2 2 0 2 5.00 m 2.00 m 7.67 m sC A A Cg y y gv v  

 (b) 49.0 N 3.00 m 147 Jg g g A C
A C A C

W PE PE mg y y  

5.37 (a) We choose the zero of potential 

energy at 

the level of the bottom of the arc. 

The initial 

height of Tarzan above this level is 

    30.0 m 1 cos 37.0 6.04 miy  



  Then, using conservation of mechanical energy, 

we find 

    2 2
1 1

0
2 2

f i im m mgyv v  

  or 

    2 22 0 2 9.80 m s 6.04 m 10.9 m sf i igyv v  

 (b) In this case, conservation of mechanical energy yields 

    
22 22 4.00 m s 2 9.80 m s 6.04 m 11.6 m sf i igyv v  

5.38 At maximum height, = 0yv  and 0= 40 m s cos 60 20 m sx xv v . 

 Thus, 2 2 20 m sf x yv v v  . Choosing PEg = 0 at the level of the launch point, conservation of 

mechanical energy gives f i fPE KE KE , and the maximum height reached is 

   

2 222

2

40 m s 20 m s
61 m

2 2 9.80 m s

i f

fy
g

v v
 

5.39 (a) Initially, all the energy is stored as elastic potential energy within the spring. When the gun is fired, 

and as 

the projectile leaves the gun, most of the energy in the form of kinetic energy along with a small 

amount of gravitational potential energy. When the projectile comes to rest momentarily at its 

maximum height, all of the energy is in the form of gravitational potential energy. 

(b) Use conservation of mechanical energy from when the projectile is at rest within the gun 

0,  0,  and 0.120 mi i iy xv  until it reaches maximum height where 0fv , 

max 20.0 mfy y , and 0fx  (the spring is relaxed after the gun is fired). 

  Then, g s g s
f i

KE PE PE KE PE PE  becomes 



    2
max

1
0 0 0 0

2
imgy kx  

  or 

  

3 2
max

22

2 20.0 10  kg 9.80 m s 20.0 m2
544 N m

0.120 mi

mgy
k

x
 

(c) This time, we use conservation of mechanical energy from when the projectile is at rest within the 

gun 0,  0,  and 0.120 mi i iy xv  until it reaches the equilibrium position of the spring 

0.120 m,  and 0f fy x . This gives 

  f g s g s
i f

KE KE PE PE PE PE   or 2 2
1 1

0 0 0
2 2

f i fm kx mgyv  

   

2 2

2 2
3

2

544 N m
0.120 m 2 9.80 m s 0.120 m

20.0 10  kg

f i f

k
x gy

m
v

 

  yielding 19.7 m sfv  

5.40 (a) 0    sin 0yF n F mg , or sinn mg F . 

  The friction force is then 

        sink k kf n mg F  

 (b) The work done by the applied force is 

        cos cosFW F Fxx  

 and the work done by the friction force is cos
kf kW f x  where  is the angle between the 

direction of  and kf x . Thus, cos180 sin
kf k kW f x mg F x . 

 (c) The forces that do no work are those perpendicular to the direction of the displacement x . 



  These are ,  ,  and the vertical coponent of mn g F . 

 (d) For part (a): 2sin 2.00 kg 9.80 m s 15.0 N sin 37.0 10.6 Nn mg F  

    0.400 10.6 N 4.23 Nk kf n  

  For part (b): cos 15.0 N 4.00 m cos 37.0 47.9 JFW Fx  

    cos 4.23 N 4.00 m cos180 16.9 J
kf kW f x  

5.41 (a) When the child slides down a frictionless surface, the only nonconservative force acting on the child 

is the normal force. At each instant, this force is perpendicular to the motion and, hence, does no 

work. Thus, conservation of mechanical energy can be used in this case. 

(b) The equation for conservation of mechanical energy, f i
KE PE KE PE , for this 

situation is 1
2
m 2

f mv 1
2fgy m 2

i mv igy . Notice that the mass of the child cancels out of the 

equation, so the mass of the child is not a factor in the frictionless case. 

(c) Observe that solving the energy conservation equation from above for the final speed gives 

2 2f i i fg y yv v  Since the child starts with the same initial speed ( 0iv ) and has the 

same change in altitude in both cases,  is the samef in the two cases. 

 (d) Work done by a non conservative force must be accounted for when friction is present. This is done 

by using the work–energy theorem rather than conservation of mechanical energy. 

 (e) From part (b), conservation of mechanical energy gives the final speed as 

   2 22 0 2 9.80 m s 12.0 m 15.3 m sf i i fg y yv v  

5.42 (a) No. The change in the kinetic energy of the plane is equal to the net work done by all forces doing 

work on 

it. In this case, there are two such forces, the thrust due to the engine and a resistive force due to the 

air. Since the work done by the air resistance force is negative, the net work done (and hence the 



change in kinetic energy) is less than the positive work done by the engine thrust. Also, because the 

thrust from the engine and the air resistance force are nonconservative forces, mechanical energy is 

not conserved in this case. 

 (b) Since the plane is in level flight, g g
f i

PE PE  and the work–energy theorem reduces to 

thrust resistancenc f iW W W KE KE , or 

    2 2
1 1

cos 0 cos180
2 2

f iF s f s m mv v  

  This gives 

    
4

22
4

2 7.5 4.0 10  N 500 m2
60 m s 77 m s

1.5 10  kg
f i

F f s

m
v v  

5.43 We shall take 0gPE  at the lowest level reached by the diver under the water. The diver falls a total of 

15 m, but the nonconservative force due to water resistance acts only during the last 5.0 m of fall. The 

work–energy theorem then gives 

    nc g g
f i

W KE PE KE PE  

 or 

 2
av cos180 5.0 m 0 0 0 70 kg 9.80 m s 15 mF  

 This gives the average resistance force as 3
av 2.1 10  N 2.1 kNF . 

5.44 (a) Choose PEg = 0 at the level of the bottom of the arc. The child’s initial vertical displacement from 

this level 

is 

    2.00 m 1 cos 30.0 0.268 miy  

  In the absence of friction, we use conservation of mechanical energy as 

  g g
f i

KE PE KE PE , or 1 2
2

0 0f im mgyv , which gives 



    22 2 9.80 m s 0.268 m 2.29 m sf igyv  

 (b) With a nonconservative force present, we use 

    2
1

0 0
2

nc g g f i
f i

W KE PE KE PE m mgyv  

  or 

    

2

2

2

2

2.00 m s
25.0 kg 9.80 m s 0.268 m 15.7 J

2

f

nc iW m gy
v

 

  Thus, 15.7 J of energy is spent overcoming friction. 

5.45 Choose PEg = 0 at the level of the bottom of the driveway. 

Then nc g g
f i

W KE PE KE PE  becomes 

2
1

cos180° 0 0 sin 20°
2

ff s m mg sv  

Solving for the final speed gives 

  
2

2 sin 20f

f s
gs

m
v  

 or 

  
3

2
3

2 4.0 10  N 5.0 m
2 9.80 m s 5.0 m sin 20 3.8 m s

2.10 10  kg
fv  

5.46 (a) Yes. Two forces, a conservative gravitational force and a nonconservative normal force, act on the 

child as 

she goes down the slide. However, the normal force is perpendicular to the child’s motion at each 

point on the path and does no work. In the absence of work done by nonconservative forces, 

mechanical energy is conserved. 

 (b) We choose the level of the pool to be the y = 0 (and hence, PEg = 0) level. Then, when the child is at 



rest at the top of the slide,  and 0gPE mgh KE . Note that this gives the constant total 

mechanical energy of the child as. total gE KE PE mgh  At the launching point (where y = 

h/5), we have 5gPE mgy mgh  and total 4 5gKE E PE mgh . At the pool level, 

0  and gPE KE mgh . 

 (c) At the launching point (i.e., where the child leaves the end of the slide), 

     2
0

1 4

2 5

mgh
KE mv  

  meaning that 

      0

8

5

gh
v  

(d) After the child leaves the slide and becomes a projectile, energy conservation gives 

1 2
total2gKE PE m mgy E mghv  where 

2 2 2
x yv v v . Here, 0x xv v  is constant, 

but yv  varies with time. At maximum height, max  and 0yy y v , yielding 

  2
0 max

1
0

2
xm mgy mghv   and  

2
0

max
2

xy h
g

v
 

(e) If the child’s launch angle leaving the slide is , then 0 0 cosxv v . Substituting this into the 

result from part (d) and making use of the result from part (c) gives 

   
2
0 2 2

max

1 8
cos cos

2 2 5

gh
y h h

g g

v
  or  2

max

4
1 cos

5
y h  

(f) No. If friction is present, mechanical energy would not be conserved, so her kinetic energy at all 

points after 

leaving the top of the waterslide would be reduced when compared with the frictionless case. 

Consequently, her launch speed, maximum height reached, and final speed would be reduced as 

well. 

5.47 Choose PEg = 0 at the level of the base of the hill and let x represent the distance the skier moves along the 



horizontal portion before coming to rest. The normal force exerted on the skier by the snow while on the 

hill is 1 cos10.5n mg  and, while on the horizontal portion, 2n mg . 

 Consider the entire trip, starting from rest at the top of the hill until the skier comes to rest on the 

horizontal portion. The work done by friction forces is 

    
1 2

cos180° 200 m cos180°

cos10.5° 200 m

nc k k

k k

W f f x

mg mg x

 

 Applying nc g g
f i

W KE PE KE PE  to this complete trip gives 

  cos10.5° 200 m 0 0 0 200 m sin10.5°k kmg mg x mg  

 or 

  
sin10.5

cos10.5° 200 m
k

x . If 0.0750k , then 289 mx . 

5.48 The normal force exerted on the sled by the track is cosn mg  and the friction force is 

cosk k kf n mg . 

If s is the distance measured along the incline that the sled travels, applying 

nc g g
f i

W KE PE KE PE  to the entire trip gives 

    2
1

cos cos180° 0 sin 0
2

k img s mg s mv  

 or 

 

2
2

2

4.0 m s
1.5 m

2 sin cos 2 9.80 m s sin 20 0.20 cos 20

i

k

s
g

v
 

5.49 (a) Consider the entire trip and apply nc g g
f i

W KE PE KE PE  to obtain 

2
1 1 2 2

1
cos180° cos180° 0 0

2
f if d f d m mgyv  



  or 

   

1 1 2 2

2

2

50.0 N 800 m 3 600 N 200 m
2 9.80 m s 1 000 m

80.0 kg

f i

f d f d
g y

m
v

 

  which yields 24.5 m sfv . 

 (b) Yes, this is too fast for safety. 

 (c) Again, apply nc g g
f i

W KE PE KE PE , now with d2 considered to be a variable, 

1 21 000 md d , and 5.00 m sfv . This gives 

    2
1 2 2 2

1
cos180° 1 000 m cos180° 0 0

2
f if d f d m mgyv  

  which reduces to 1 2
1 1 2 2 2 2

1 000 m f if f d f d m mgyv . Therefore, 

    

2
1

2
2 1

2

1
1 000 m

2

1
784 N 1 000 m 1 000 m 50.0 N 80.0 kg 5.00 m s

2 206 m
3 600 N 50.0 N

i fmg y f m

d
f f

v

 

(d) In reality, the air drag will depend on the skydiver’s speed. It will be larger than her 784 N weight 

only after the chute is opened. It will be nearly equal to 784 N before she opens the chute and again 

before she touches down, whenever she moves near terminal speed. 

5.50 (a) ncW KE PE , but 0KE  because the speed is constant. The skier rises a vertical 

distance of 60 m sin30 30 my . Thus, 

   2 470 kg 9.80 m s 30 m 2.06 10  J 21 kJncW  

 (b) The time to travel 60 m at a constant speed of 2.0 m/s is 30 s. Thus, the required power input is 



   
42.06 10  J 1 hp

686 W 0.92 hp
30 s 746 W

ncW

t
P  

5.51 As the piano is lifted at constant speed up to the apartment, the total work that must be done on it is 

  3 40 3.50 10  N 25.0 m 8.75 10  Jnc g f iW KE PE mg y y  

 The three workmen (using a pulley system with an efficiency of 0.750) do work on the piano at a rate of 

  net single
worker

0.750 3 0.750 3 165 W 371 W 371 J sP P  

 so the time required to do the necessary work on the piano is 

  
4

net

8.75 10  J 1 min
236 s 236 s 3.93 min

371 J s 60 s

ncW
t
P

 

5.52 Let N be the number of steps taken in time t. We determine the number of steps per unit time by 

  
work per step per unit mass mass # stepswork done

Power = 
t t

 

 or 

  
J step

70 W 0.60 60 kg
kg

N

t
, giving = 1.9 steps s

N

t
 

 The running speed is then 

  av

step m
distance traveled per step 1.9 1.5 2.9 m s

s step

x N

t t
 

5.53 Assuming a level track, 
f iPE PE , and the work done on the train is 

  
22 2

1 1
0.875 kg 0.620 m s 0 0.168 J

2 2

nc f i

f i

W KE PE KE PE

m v v

 

 The power delivered by the motor is then 



  
3

0.168 J
8.01 W

21.0 10  s

ncW

t
P  

5.54 When the car moves at constant speed on a level roadway, the power used to overcome the total frictional 

force equals the power input from the engine, or output total inputfP Pv . This gives 

   
input 5

total

175 hp 746 W
4.5 10  N

29 m s 1 hp
f

P

v
 

5.55 The work done on the older car is 

 2 2
net old old

1 1
0

2 2
f iW KE KE m mv v  

 The work done on the newer car is 

   
2 2

net netnew oldnew

1 1
2 0 4 4

2 2
f iW KE KE m m Wv v  

 and the power input to this car is 

   
net netnew old

new old

4
4

W W

t t
P P  

 or the power of the newer car is 4 times that of the older car . 

5.56 Neglecting any variation of gravity with altitude, the work required to lift a 73.20 10  kg  load at 

constant speed to an altitude of 1.75 kmy  is 

   7 2 3 113.20 10  kg 9.80 m s 1.75 10  m 5.49 10  JgW PE mg y  

 The time required to do this work using a 32.70 kW 2.70 10  J sP  pump is 

   
11

8 8 4
3

5.49 10  J 1 h
2.03 10  s 2.03 10  s 5.64 10  h

2.70 10  J s 3 600 s

W
t

P
 



5.57 (a) The acceleration of the car is 

  
0 2

18.0 m s 0
1.50 m s

12 .0 s
a

t

v v
 

  Thus, the constant 

  forward force due to the engine is found from 
engine airF F F ma  as 

    3 2 3
engine air 400 N 1.50 10  kg 1.50 m s 2 .65 10  NF F ma  

 The average velocity of the car during this interval is 
av 0 / 2 9.00 m sv v v , so the average 

power input from the engine during this time is 

    3
av engine av

1 hp
2.65 10  N 9.00 m s 32.0 hp

746 W
FP v  

 (b) At t = 12.0 s, the instantaneous velocity of the car is 18.0 m sv  and the instantaneous power 

input from the engine is 

    3
engine

1 hp
2.65 10  N 18.0 m s 63.9 hp

746 W
FP v  

5.58 (a) The acceleration of the elevator during the first 3.00 s is 

    0 2
1.75 m s 0

0.583 m s
3.00 s

a
t

v v
 

  so 
net motorF F mg ma  gives the force exerted by the motor as 

    2 3
motor  650 kg 0.583 9.80  m s 6.75 10  NF m a g  

 The average velocity of the elevator during this interval is av 0 2 0.875 m s( )v v v  so the 

average power input from the motor during this time is 



    3
av motor av

1 hp
6.75 10  N 0.875 m s 7.92 hp

746 W
FP v  

(b) When the elevator moves upward with a constant speed of 1.75 m sv , the upward force exerted 

by the motor is 
motorF mg  and the instantaneous power input from the motor is 

    2
1 hp

650 kg 9.80 m s 1.75 m s 14.9 hp
746 W

mgP v  

5.59 The work done on the particle by the force F as 

the particle moves from 
ix x to 

fx x  is the 

area under the curve from  to i fx x . 

 (a) For 0x  to 8.00 mx , 

    
1

area of triangle altitude
2

W ABC AC  

    0 8

1
8.00 m 6.00 N 24.0 J

2
W  

 (b) For  to 10.0 mx , 

     8 10

1
area of triangle altitude

2
W CDE CE  

     
1

= 2.00 m 3.00 N 3.00 J
2

 

 (c) 0 10 0 8 8 10 24.0 J 3.00 J 21.0 JW W W  

5.60 The work done by a force equals the area under 

the force versus displacement curve. 

 (a) For the region 0 5.00 mx , 

    
0 to 5

3.00 N 5.00 m
7.50 J

2
W  

 (b) For the region 5.00 m 10.0 mx , 



    5 to 10 3.00 N 5.00 m 15.0 JW  

(c) For the region 10.0 m 15.0 mx , 
10 to 15

3.00 N 5.00 m
7.50 J

2
W  

(d) 0 to 0
area under  vs.  curve from 0 m to 

ff
x fx x x

KE KE W F x x x x , or 

    2 2
0 0 to 

1 1

2 2 ff xm m Wv v  

  giving 

      2
0 0 to 

2
ff xW

m
v v  

  For 5.00 mfx : 

     
22

0 0 to 5

2 2
0.500 m s 7.50 J 2.29 m s

3.00 kg
f W

m
v v  

  For 15.0 mfx : 

      2 2
0 0 to 15 0 0 to 5 5 to 10 10 to 15

2 2
f W W W W

m m
v v v  

  or 

      
2 2

0.500 m s 7.50 J 15.0 J 7.50 J 4.50 m s
3.00 kg

fv  

5.61 (a)  8 16  NxF x See the graph at the right. 

(b) The net work done is the total area under the graph 

from 0 to 3.00 mx x . This consists of two 

triangular shapes, one below the axis (negative area) 

and one above the axis (positive). The net work is then 



    
net

2 .00 m 16.0 N 1.00 m 8.00 N

2 2

12.0 J

W
 

5.62 (b) Solving part (b) first, we recognize that the egg has constant acceleration ya g  as it falls 32.0 

m from rest before contacting the pad. Taking upward as positive, its velocity just before contacting 

the pad is given by 2 2
0 2 ya yv v  as 

    2
1 0 2 9.80 m s 32.0 m 25.0 m sv  

  The average acceleration as the egg comes to rest in 9.20 ms after contacting the pad is 

    
1 3 2

av 3

0 25.0 m s 25.0
10  m s

9.20 10  s 9.20

f
a

t

v v
 

  and the average net force acting on the egg during this time is 

   3 3 2
net avav

25.0
75.0 10  kg 10  m s 204 N 204 N upward

9.20
F ma  

 (a) The egg has a downward displacement of magnitude y  as the upward force net av
F  brings the 

egg to rest. The net work done on the egg in this process is 

    2
net net 1 1av

1
cos180° 0

2
fW F y KE KE mv  

  so 

  

232
1

net av

75.0 10  kg 25.0 m s
0.115 m 11.5 cm

2 204 N2 cos180

m
y

F

v
 

5.63 The person’s mass is 



 
2

700 N
71.4 kg

9.80 m s

w
m

g
 

 The net upward force acting on the body is 
net 2 355 N 700 N 10.0 NF . The final upward 

velocity can then be calculated from the work–energy theorem as 

    2 2
net

1 1

2 2
f i iW KE KE m mv v  

 or 

    2
net

1
cos 10.0 N cos 0° 0.250 m 71.4 kg 0

2
F s v  

 which gives 0.265 m s  upwardv . 

5.64 Taking y = 0 at ground level, and using conservation of energy from when the boy starts from rest 

( 0)iv
 at the top of the slide ( )iy H  to the instant he leaves the lower end ( )fy h  of the 

frictionless slide with a horizontal velocity 
0 0( ,  0)x f yv v v , yields 

 2
1

0
2

fm mgh mgHv     or  2 2f g H hv  [1] 

 Considering his flight as a projectile after leaving the end of the slide, 1 2
0 2y yy t a tv gives the time 

to drop distance h to the ground as 

  2
1

0
2

h g t     or   
2h

t
g

 

 The horizontal distance traveled (at constant horizontal velocity) during this time is d, so 

  0

2
x f

h
d t

g
v v      and   

2

2 2
f

g gd
d

h h
v   

 Substituting this result into Equation [1] above gives 



  
2

2
2

gd
g H h

h
     or   

2

4

d
H h

h
 

5.65 (a) If y = 0 at point B, then A 35.0 m sin 50.0° 26.8 my  and 
B 0y . Thus, 

    3 2 5
A A 1.50 10  kg 9.80 m s 26.8 m 3.94 10  JPE mgy  

    B B 0PE mgy  and 5 5
A B B A 0 3.94 10  J 3.94 10  JPE PE PE  

 (b) If y = 0 at point C, then A 50.0 m sin 50.0° 38.3 my  and 

B 15.0 m sin 50.0° 11.5 my . In this case, 

     3 2 5
A A 1.50 10  kg 9.80 m s 38.3 m 5.63 10  JPE mgy  

     3 2 5
B B 1.50 10  kg 9.80 m s 11.5 m 1.69 10  JPE mgy  

  and 

   5 5 5
A B B A 1.69 10  J 5.63 10  J 3.94 10  JPE PE PE  

5.66 The support string always lies along a radius 

line of the circular path followed by the bob. 

This means that the tension force in the string 

is always perpendicular to the motion of the 

bob and does no work. Thus, mechanical energy 

is conserved and (taking y = 0 at the point of 

support) this gives 

 1 12 2
2 2

0 cosi i f im m mg y y mg L Lv v  

 or 

 22 1 cos 2 9.8 m s 2.0 m 1 cos 25°igLv  



 1.9 m sv  

5.67 (a) The equivalent spring constant of the bow is given F kx  by as 

    
230 N

= 575 N m
0.400 m

f

f

F
k

x
 

 (b) From the work–energy theorem applied to this situation, 

    2
1

0 0 0 0 0
2

nc g s g s f
f i

W KE PE PE KE PE PE kx  

  The work done pulling the bow is then 

    
22

1 1
575 N m 0.400 m 46.0 J

2 2
nc fW kx  

5.68 Choose PEg = 0 at the level where the block comes to rest against the spring. Then, in the absence of work 

done by nonconservative forces, the conservation of mechanical energy gives 

    g s g s
f i

KE PE PE KE PE PE  

 or  

    2
1

0 0 0 sin 0
2

fkx mg L  

 Thus, 

    
2

4

2 12.0 kg 9.80 m s 3.00 m sin 35.02 sin
0.116 m

3.00 10  N m
f

mg L
x

k
 

5.69 (a) From 2 2
0 2 ya yv v , we find the speed just before touching the ground as 



    20 2 9.80 m s 1.0 m 4.4 m sv  

 (b) Choose PEg = 0 at the level where the feet come to rest. Then  

  nc g g
f i

W KE PE KE PE  becomes 

  2
av

1
cos180° 0 0

2
iF s m mg sv  

  or 

   

2
2

2 5
av 3

75 kg 4.4 m s
75 kg 9.80 m s 1.5 10  N

2 2 5.0 10  m

im
F mg

s

v
 

5.70 From the work–energy theorem, 

    nc g s g s
f i

W KE PE PE KE PE PE  

 we have 

    2 2
1 1

cos180° 0 0 0 0
2 2

k f if s m kxv  

 or 

    
2 2 2

3

2 (8.0 N/m)(5.0 10 m) 2(0.032 N)(0.15 m)
1.4 m/s

5.3 10 kg

i k
f

kx f s

m
 

5.71 (a) The two masses will pass when both are at 2.00 mfy  above the floor. From conservation 

  of energy, 
g s g s

f i
KE PE PE KE PE PE  

    
2

1 2 1 2 1 1

1
0 0 0

2
f f im m m m gy m gyv

 



  or 

    

1 1

1 2

2

2

2
2

2 5.00 kg 9.80 m s 4.00 m
2 9.80 m s 2 .00 m  

8.00 kg

i
f f

m gy
gy

m m
v

 

  This yields the passing speed as 3.13 m sfv . 

 (b) When 
1 5.00 kgm  reaches the floor, is above the floor, 

2 3.00 kgm  IS  2 4.00 mfy above 

the floor. 

  Thus, 
g s g s

f i
KE PE PE KE PE PE  becomes 

    2
1 2 2 2 1 1

1
0 0 0

2
f f im m m gy m gyv  

  or 

    1 1 2 2

1 2

2 i f

f

g m y m y

m m
v  

  Thus, 

    
22 9.80 m s 5.00 kg 4.00 m 3.00 kg 4.00 m

4.43 m s
8.00 kg

fv  

 (c) When the 5.00-kg hits the floor, the string goes slack and the 3.00-kg becomes a projectile launched 

straight upward with initial speed 
0 4.43 m syv . At the top of its arc, 

y 0v  

2 2
0and  2y y ya yv v  gives 



    

22 2
0

2

0 4.43 m s
1.00 m

2 2 9.80 m s

y y

y

y
a

v v
 

5.72 The normal force the incline exerts on block A is cos 37A An m g , and the friction force is 

cos 37k k A k Af n m g . The vertical distance block A rises is 20 m sin 37° 12 mAy , 

while the vertical displacement of block B is 20 mBy . 

 We find the common final speed of the two blocks by use of 

    nc g g g
f i

W KE PE KE PE KE PE  

 This gives 2
1

cos 37° 0
2

k A A B f A A B Bm g s m m m g y m g yv , or 

   

2

2

2 cos 37°

2 9.80 m s 100 kg 20 m 50 kg 12 m 0.25 50 kg 20 m cos 37°

150 kg

B B A A k A

f
A B

g m y m y m s

m m
v

 

 which yields 2 2 2157 m sfv . 

 The change in the kinetic energy of block A is then 

    2 2 2 3
1 1

0 50 kg 157 m s 3.9 10  J 3.9 kJ
2 2

A A fKE m v  

5.73 Since the bowl is smooth (that is, frictionless), 

mechanical energy is conserved or 

  f i
KE PE KE PE   

 Also, if we choose y = 0 (and hence, PEg = 0) 

at the lowest point in the bowl, then 



,  0,  and 2 3A B Cy R y y R . 

 (a) g A
A

PE mgy mgR , or 

  20.200 kg 9.80 m s 0.300 m 0.588 Jg
A

PE  

 (b) 0 0.588 J 0 0.588 JB A A B A BKE KE PE PE mgy mgy  

 (c) 1 2
2

2 0.588 J2
    2.42 m s

0.200 kg

B
B B B

KE
KE m

m
v v  

 (d) 2
2 0.300 m

0.200 kg 9.80 m s 0.392 J
3

g C
C

PE mgy  

  0.588 J 0 0.392 J 0.196 JC B B CKE KE PE PE  

5.74 (a) 
22

1 1
0.200 kg 1.50 m s 0.225 J

2 2
B BKE mv  

(b) The change in the altitude of the particle as 

it goes from A to B is A By y R , where 

R = 0.300 m is the radius of the bowl. Therefore, 

the work–energy theorem gives 

    
0

nc B A B A

B B A B

W KE KE PE PE

KE mg y y KE mg R
 

    or 

   20.225 J 0.200 kg 9.80 m s 0.300 m 0.363 JncW  



  The loss of mechanical energy as a result of friction is then .0.363 J. 

(c) No. Because the normal force, and hence the friction force, vary with the position of the particle on 

its path, 

it is not possible to use the result from part (b) to determine the coefficient of friction without using 

calculus. 

5.75 (a) Consider the sketch at the right. When the mass m = 1.50 kg is in 

equilibrium, the upward spring force exerted on it by the lower spring 

(i.e., the tension in this spring) must equal the weight of the object, or 

2SF mg . Hooke’s law then gives the elongation of this spring as 

    
2

2
2 2

SF mg
x

k k

 

 Now, consider point A where the two springs join. Because this point is 

in equilibrium, the upward spring force exerted on A by the upper spring 

must have the same magnitude as the downward spring force exerted on A 

by the lower spring (that is, the tensions in the two springs must be equal). 

  The elongation of the upper spring must be 

    
1 2

1
1 1 1

S SF F mg
x

k k k
 

  and the total elongation of the spring system is 

    

1 2
1 2 1 2

2 2
3 3

1 1

1 1
1.50 kg 9.80 m s 2.04 10  m

1.20 10  N m 1.80 10  N m

mg mg
x x x mg

k k k k
 

(b) The spring system exerts an upward spring force of SF mg  on the suspended object and 

undergoes an elongation of x. The effective spring constant is then 

      
2

2
effective 2

1.50 kg 9.80 m s
7.20 10  N m

2.04 10  m

SF mg
k

x x
 



5.76 Refer to the sketch given in the solution of Problem 5.75. 

(a) Because the object of mass m is in equilibrium, the tension in the lower spring, 
2SF

 must equal the 

weight of the object. Therefore, from Hooke’s law, the elongation of the lower spring is 

   
2

2
2 2

SF mg
x

k k
 

  From the fact that the point where the springs join (A) is in equilibrium, we conclude that the 

tensions in the two springs must be equal, 1 2S SF F mg . The elongation of the upper spring is 

then 

   
1

1
1 1

SF mg
x

k k
 

  and the total elongation of the spring system is 

   1 2
1 2

1 1
x x x mg

k k
 

(b) The two spring system undergoes a total elongation of x and exerts an upward spring force SF mg

on the  

suspended mass. The effective spring constant of the two springs in series is then 

    

1

effective
1 2

1 2

1 1
 

1 1

SF mg mg
k

x x k k
mg

k k

 

5.77 (a) The person walking uses Ew = (220 kcal)(4 186 J/1 kcal = 9.21  105  J of energy while going 3.00 

miles. The quantity of gasoline which could furnish this much energy is 

    
5

3
1 8

9.21 10  J
7.08 10  gal

1.30 10  J gal
V  



  This means that the walker’s fuel economy in equivalent miles per gallon is 

    
3

3.00 mi
 423 mi gal

7.08 10  gal
fuel economy  

 (b) In 1 hour, the bicyclist travels 10.0 miles and uses 

    6
4 186 J

400 kcal 1.67 10  J
1 kcal

BE  

  which is equal to the energy available in 

    
6

2
2 8

1.67 10  J
1.29 10  gal

1.30 10  J gal
V  

  of gasoline. Thus, the equivalent fuel economy for the bicyclist is 

    
2

10.0 mi
776 mi gal

1.29 10  gal
 

5.78 When 1 pound (454 grams) of fat is metabolized, the energy released is E = (454 g)(9.00 kcal/g) = 4.09  

103 kcal. Of this, 20.0% goes into mechanical energy (climbing stairs in this case). Thus, the mechanical 

energy generated by metabolizing 1 pound of fat is 

    30.200 4.09 10  kcal 817 kcalmE  

 Each time the student climbs the stairs, she raises her body a vertical distance of 

80 steps 0.150 m step 12.0 my . The mechanical energy required to do this is 

gPE mg y , or 

    2 3
1 kcal

50.0 kg 9.80 m s 12.0 m 5.88 10  J 1.40 kcal
4186 J

gPE  

 (a) The number of times the student must climb the stairs to metabolize 1 pound of fat is 



    

817 kcal
582 trips

1.40 kcal trip

m

g

E
N

PE  

  It would be more practical for her to reduce food intake. 

(c) The useful work done each time the student climbs the stairs is 35.88 10  JgW PE . Since 

this is accomplished in 65.0 s, the average power output is 

    
3

av

5.88 10  J 1 hp
90.5 W 90.5 W 0.121 hp

65.0 s 746 W

W

t
P  

5.79 (a) Use conservation of mechanical energy, ( ) ( )g f g iKE PE KE PE , from the start to the end of 

the track to find the speed of the skier as he leaves the track. This gives 1 2
2

0f im mgy mgyv

, or 

   22 ( 2(9.80 m/s )(4.00 m) 28.0 m/si fg y y  

(b) At the top of the parabolic arc the skier follows after leaving the track, and 0yv . Thus, 

28.0 m s cos 45.0° 19.8 m sxv .Thus , 2 2
top 19.8 m sx yv v v  Applying 

conservation of mechanical energy from the end of the track to the top of the arc gives 

2 21 1
max2 2

19.8 m s 28.0 m s 10.0 mm mg y m mg , or 

    

2 2

max 2

28.0 m s 19.8 m s
10.0 m 30.0 m

2 9.80 m s
y  

 (c) Using 1 2
0 2y yy t a tv  for the flight from the end of the track to the ground gives 

    2 2
1

10.0 m 28.0 m s sin 45.0° 9.80 m s
2

t t  

  The positive solution of this equation gives the total time of flight as t = 4.49 s. During this time, the 

skier has  



a horizontal displacement of 

    0 28.0 m s cos 45.0° 4.49 s 89.0 mxx tv  

5.80 First, determine the magnitude of the applied force by considering 

a free-body diagram of the block. Since the block moves with 

constant velocity, 0x yF F . 

 From 0xF
, we see that cos 30n F . 

 Thus, cos 30k k kf n F , and 0yF  becomes 

   sin 30 cos 30kF mg F  

 or 

   
2

2
5.0 kg 9.80 m s

2 .0 10  N
sin 30° cos 30° sin 30° 0.30 cos 30°k

mg
F  

 (a) The applied force makes a 60° angle with the displacement up the wall. Therefore, 

    2 2cos 60° 2.0 10  N cos 60° 3.0 m 3.1 10  JFW F s  

 (b) 2cos180° 49 N 1.0 3.0 m 1.5 10  JgW mg s  

 (c) cos 90 0nW n s  

 (d) 249 N 3.0 m 1.5 10  JgPE mg y  

5.81 We choose PEg = 0 at the level where the spring is relaxed (x = 0), or at the level of position B. 

 (a) At position A, KE = 0 and the total energy of the system is given by 

    2
1 1

1
0

2
g s

A
E PE PE mgx k x , or 



    
22 4

1
25.0 kg 9.80 m s 0.100 m 2.50 10  N m 0.100 m 101 J

2
E  

 (b) In position C, and the spring is uncompressed, so PEs = 0. Hence, 

    20 0g
C

E PE mg x  

  or 

    2 2

101 J
0.410 m

25.0 kg 9.80 m s

E
x

mg
 

 (c) At position B, 0g sPE PE  and 1 2
2

0 0 BB
E KE mv  

  Therefore, 

    
2 101 J2

2.84 m s
25.0 kg

B

E

m
v  

(b) Where the velocity (and hence the kinetic energy) is a maximum, the acceleration is 

( ) 0y ya F m  (at this point, an upward force due to the spring exactly balances the downward 

force of gravity). Thus, taking upward as Positive, 0yF kx mg  

    3
4

245 kg
9.80 10  m 9.80 mm

2.50 10  N m

mg
x

k
 

 (e) From the total energy, 1 12 2
2 2g sE KE PE PE m mgx kxv , we find 

    2
2

2
E k

gx x
m m

v  

  Where the speed, and hence kinetic energy is a maximum (that is, at x = 9.80 mm), this gives 

    
4

2
2 3 3

max

2.50 10  N m2 101 J
2 9.80 m s 9.80 10  m 9.80 10  m

25.0 kg 25.0 kg
v  

  or 



    max 2.85 m sv  

5.82 When the hummingbird is hovering, the magnitude of the average upward force exerted by the air on the 

wings (and hence the average downward force the wings exert on the air) must be avF mg  where mg is 

the weight of the bird. Thus, if the wings move downward distance d during a wing stroke, the work done 

each beat of the wings is 

    3 2 2 3
beat av 3.0 10  kg 9.80 m s 3.5 10  m 1.0 10  JW F d mgd  

 In 1 minute, the number of beats of the wings that occur is 

    380 beats s 60 s min 4.8 10  beats minN  

 so the total work preformed in 1 minute is 

    3 3
total beat

beats J
1 min 4.8 10  1.0 10  1 min 4.9 J

min beat
W NW  

5.83 Choose 0gPE  at the level of the river. Then 36.0 miy , 4.00 fy , the jumper falls 32.0 m, and 

the cord stretches 7.00 m. Between the balloon and the level where the diver stops momentarily, 

g s g s
f i

KE PE PE KE PE PE gives 

  
21

0 700 N 4.00 m 7.00 m 0 700 N 36.0 m 0
2
k  

 or 

  914 N mk  

5.84 If a projectile is launched, in the absence of air resistance, with speed 0v  at angle   above the horizontal, 

the time required to return to the original level is found from 1 2
0 2y yy t a tv  as 

2
00 sin 2( )t g tv , which gives 02 sin( )t gv . The range is the horizontal displacement 

occurring in this time. 

 Thus, 



   
2 2
0 00

0 0

2 sin cos sin 22 sin
cosxR t

g g g

v vv
v v  

 Maximum range occurs when  = 45 , giving or 2
max 0R gv .or 2

0 maxg Rv  The minimum kinetic 

energy required to reach a given maximum range is then 

    2
0 max

1 1

2 2
KE m mg Rv  

 (a) The minimum kinetic energy needed in the record throw of each object is 

   Javelin:  2 2
1

0.80 kg 9.80 m s 98 m 3.8 10  J
2

KE  

   Discus: 2 2
1

2.0 kg 9.80 m s 74 m 7.3 10  J
2

KE  

   Shot:   2 2
1

7.2 kg 9.80 m s 23 m 8.1 10  J
2

KE  

(b) The average force exerted on an object during launch, when it starts from rest and is given the 

kinetic energy found above, is computed from as net avW F s KE  as av 0F KE s  

Thus, the required force for each object is 

   Javelin:  
2

2
av

3.8 10  J
1.9 10  N

2.00 m
F  

   Discus:  
2

2
av

7.3 10  J
3.6 10  N

2.00 m
F  

   Shot:   
2

2
av

8.1 10  J
4.1 10  N

2.00 m
F  

(c) Yes. If the muscles are capable of exerting 4.1  102 N on an object and giving that object a kinetic 

energy of 8.1  102 J, as in the case of the shot, those same muscles should be able to give the 

javelin a launch speed of  



   
2

0

2 8.1 10  J2
45 m s

0.80 kg

KE

m
v  

  with a resulting range of 

    
2

2
0 2

max 2

45 m s
2.1 10  m

9.80 m s
R

g

v
 

 Since this far exceeds the record range for the javelin, one must conclude that air resistance plays a 

very significant role in these events. 

5.85 From the work–energy theorem,
net f iW KE KE . Since the package moves with constant velocity, 

f iKE KE .giving 
net 0W . 

 Note that the above result can also be obtained by the following reasoning: 

 Since the object has zero acceleration, the net (or resultant) force acting on it must be zero. The net work 

done is net net 0W F d . 

 The work done by the conservative gravitational force is 

   grav sing f iW PE mg y y mg d  

 or 

   2 4
grav 50 kg 9.80 m s 340 m sin 7.0° 2.0 10  JW p  

 The normal force is perpendicular to the displacement. The work it does is 

   normal cos 90° 0W nd  

 Since the package moves up the incline at constant speed, the net force parallel to the incline is zero. Thus,

0  sin 0,   or   sins sF f mg f mg . 

 The work done by the friction force in moving the package distance d up the incline is 

   2 4
friction sin 50 kg 9.80 m s sin 7.0° 340 m 2.0 10  JkW f d mg d  



5.86 Each 5.00-m length of the cord will stretch 1.50 m when the tension in the cord equals the weight of the 

jumper (that is, when 
sF w mg ). Thus, the elongation in a cord of original length L when 

sF w  

will be 

       1.50 m 0.300
5.00 m

L
x L  

 and the force constant for the cord of length L is 

   
0.300

sF w
k

x L
 

 (a) In the bungee-jump from the balloon, the daredevil drops 55.0 mi fy y . 

 The stretch of the cord at the start of the jump is xi = 0, and that at the lowest point is 

55.0 mfx L . Since 0i fKE KE  for the fall, conservation of mechanical energy gives 

       2 2
1

0 0     
2

g s g s f i i ff if i
PE PE PE PE k x x mg y y  

  giving 

     
1

2

mg 2
55.0 m

0.300
L mg

L
55.0 m  and 

2
55.0 m 33.0 mL L  

  which reduces to 

    
2 255.0 m 110 m 33.0 mL L L  

  or 

    
22 143 m 55.0 m 0L L  

  and has solutions of 

    

2 2
143 m 143 m 4 1 55.0 m

2 1
L  



  This yields 

     143 m 91.4 m

2
L  and 117 m   or   25.8 mL L  

  Only the L = 25.8 m solution is physically acceptable! 

 (b) During the jump,     ,   or   y y y

m
F ma kx mg ma

0.300

g
x m

L
g m ya  

  Thus, 

    1
0.300

y

x
a g

L
 

  which has maximum value at 
max 55.0 m 29.2 mx x L . 

       2

max

29.2 m
1 2.77 27.1 m s

0.300 25.8 m
ya g g  

5.87 (a) While the car moves at constant speed, the tension in the cable is F = mg sin , and the power input 

is sinF mg , sinF mgP v v , or 

    2 4950 kg 9.80 m s 2.20 m s sin 30.0° 1.02 10  W 10.2 kWP  

(b) While the car is accelerating, the tension in the cable is 

2 3

sin sin

2.20 m s 0
950 kg 9.80 m s sin 30.0° 4.83 10  N

12.0 s

aF mg ma m g
t

v

 

  Maximum power input occurs the last instant of the acceleration phase. Thus, 

    3
max max 4.83 10  N 2.20 m s 10.6 kWaFP v  

 (c) The work done by the motor in moving the car up the frictionless track is 



    2
1

0 sin
2

nc f g ff i f
W KE PE KE PE KE PE m mg Lv  

  or 

    
2 2 6

1
950 kg 2.20 m s 9.80 m s 1 250 m sin 30.0° 5.82 10  J

2
ncW  

5.88 (a) Since the tension in the string is always perpendicular to the motion of the object, the string does no 

work on  

the object. Then, mechanical energy is conserved: 

    g g
f i

KE PE KE PE  

  Choosing PEg = 0 at the level where the string attaches to the cart, this gives 

    2
0

1
0 cos

2
mg L m mg Lv  

  or 

    0 2 1 cosg Lv  

 (b) If L = 1.20 m and  = 35.0 , the result of part (a) gives 

   2
0 2 9.80 m s 1.20 m 1 cos 35.0° 2.06 m sv  

5.90 (a) Realize that, with the specified arrangement of springs, each spring supports one-fourth the weight 

of the load (shelf plus trays). Thus, adding the weight (w = mg) of one tray to the load increases the 

tension in each spring by F = mg/4. If this increase in tension causes an additional elongation in 

each spring equal to the thickness of a tray, the upper surface of the stack of trays stays at a fixed 

level above the floor as trays are added to or removed from the stack. 

(b) If the thickness of a single tray is t, the force constant each spring should have to allow the fixed-

level tray dispenser to work properly is 



    
4

4

F mg mg
k

x t t
 

  or 

    
2

2

0.580 kg 9.80 m s
316 N m

4 0.450 10  m
k  

  The length and width of a tray are unneeded pieces of data. 

5.91 When the cyclist travels at constant speed, the magnitude of the forward static friction force on the drive 

wheel equals that of the retarding air resistance force. Hence, the friction force is proportional to the 

square of the speed, and her power output may be written as 

    2 3
sf k kP v v v v  

 where k is a proportionality constant. 

 If the heart rate R is proportional to the power output, then 3 3R k k k k kP v v  where k  is 

also a proportionality constant. 

 The ratio of the heart rate R2 at speed 2v  to the rate R1 at speed 1v  is then 

     

3
3

2 2 2

3
1 1 1

R k k

R k k

v v

v v
 

 giving 

    

1 3

2
2 1

1

R

R
v v  

 Thus, if 90.0 beats min  at 22.0 km hR v , the speed at which the rate would be is 136 beats/min 

is 



    

1 3
136 beats min

22.0 km h 25.2 km h
90.0 beats min

v  

 and the speed at which the rate would be 166 beats/min 

    

1 3
166 beats min

22.0 km h 27.0 km h
90.0 beats min

v  

5.92 (a) The needle has maximum speed during the interval between when the spring returns to normal 

length and the needle tip first contacts the skin. During this interval, the kinetic energy of the needle 

equals the original elastic potential energy of the spring, or 1 12 2
max2 2 im kxv . This gives 

    2
max 3

375 N m
8.10 10  m 21.0 m s

5.60 10  kg
i

k
x
m

v  

(b) If F1 is the force the needle must overcome as it penetrates a thickness x1 of skin and soft tissue 

while F2 is the force overcame while penetrating thickness x2 of organ material, application of the 

work–energy theorem from the instant before skin contact until the instant before hitting the stop 

gives 

    1 12 2
net 1 1 2 2 max2 2fW F x F x m mv v  

  or  

    1 1 2 22
max

2
f

F x F x

m
v v  

   
2 2

2

3

2 7.60 N 2.40 10  m 9.20 N 3.50 10  m
21.0 m s 16.1 m s

5.60 10  kg
f  


