\I«

mw\\\f\\wmwﬁxx Mwmwww$ﬂmw\h\\ AMQ\Q&W nw.wyﬂukh&m D&&AWAV

(15 points) Consider the list of ten numbers that follows
this problem statement. First sort the list. Then use a

binary search to search it. Your search algorithm should

indicate whether the number is in the list and should also
note its position. Sample output might look like this:

234 is in the list at position 7
78 is not in the list

Search the following list for 99, 183, 225, 642, and 999.
The list: mwmws 499, 264, 506, 530, 219, 102, 183, 642, 512

A binary search works by comparing the target to be found with
the middle entry in a sorted list. If they match, the search
is over. Otherwise, if the target is less than the middle
entry, the search can be confined to the first half of the
list. Similary, if the target is greater than the middle
entry, the search is confined to the second half of the list.
In either case the same logic is then applied to the middle
entry in the new list. Consider the following example where

Low = 1
High = 7
Middle =

L (OUER)D

(Low + High)/2 (Using integer arithmetic)




Target, the number to be found, is 89

First search of List() for 89

12

14

26

45 <== (Middle = 4), Target > List(Middle)
57

67

89

Second search of List() for 89
12
14
26
45

57 :
67 <== (Middle =.6), Target > List(Middle)

89

Third search of List() for 89
12
14
26
45
57
67

89 <== (Middle = 7), Target = List(Middle)

A pseudocode version of a correct binary search algorithm
might take this form: s
Found = false
Low = 1
High = N
While (not Found) and (Low <= High) Do
Middle = (Low + High)/2
If Target < List(Middle) Then
High = Middle - 1
Else
If Target > List(Middle) Then
JLow = Middle + 1
Else
Found = true
Position = Middle
Endif
Endif
Endwhile




